scholarly journals CELL GROWTH AND CELL DIVISION IN THE SHOOT OF THE FLOWERING PLANT1

1929 ◽  
Vol 28 (1) ◽  
pp. 54-81 ◽  
Author(s):  
J. H. PRIESTLEY
Keyword(s):  
1961 ◽  
Vol 23 (2) ◽  
pp. 354-360 ◽  
Author(s):  
I.L. Cameron ◽  
D.M. Prescott
Keyword(s):  

2018 ◽  
Author(s):  
Evgeny Zatulovskiy ◽  
Daniel F. Berenson ◽  
Benjamin R. Topacio ◽  
Jan M. Skotheim

Cell size is fundamental to function in different cell types across the human body because it sets the scale of organelle structures, biosynthesis, and surface transport1,2. Tiny erythrocytes squeeze through capillaries to transport oxygen, while the million-fold larger oocyte divides without growth to form the ~100 cell pre-implantation embryo. Despite the vast size range across cell types, cells of a given type are typically uniform in size likely because cells are able to accurately couple cell growth to division3–6. While some genes whose disruption in mammalian cells affects cell size have been identified, the molecular mechanisms through which cell growth drives cell division have remained elusive7–12. Here, we show that cell growth acts to dilute the cell cycle inhibitor Rb to drive cell cycle progression from G1 to S phase in human cells. In contrast, other G1/S regulators remained at nearly constant concentration. Rb is a stable protein that is synthesized during S and G2 phases in an amount that is independent of cell size. Equal partitioning to daughter cells of chromatin bound Rb then ensures that all cells at birth inherit a similar amount of Rb protein. RB overexpression increased cell size in tissue culture and a mouse cancer model, while RB deletion decreased cell size and removed the inverse correlation between cell size at birth and the duration of G1 phase. Thus, Rb-dilution by cell growth in G1 provides a long-sought cell autonomous molecular mechanism for cell size homeostasis.


2010 ◽  
Vol 46 (6) ◽  
pp. 578-586 ◽  
Author(s):  
Ricardo Sotelo ◽  
Verónica Garrocho-Villegas ◽  
Raúl Aguilar ◽  
Ma. Elena Calderón ◽  
Estela Sánchez de Jiménez

1994 ◽  
Vol 107 (11) ◽  
pp. 3105-3114 ◽  
Author(s):  
Q. Luo ◽  
C. Michaelis ◽  
G. Weeks

A cyclin gene has been isolated from Dictyostelium discoideum and the available evidence indicates that the gene encodes a B type cyclin. The cyclin box region of the protein encoded by the gene, clb1, has the highest degree of sequence identity with the B-type cyclins of other species. Levels of cyclin B mRNA and protein oscillate during the cell cycle with maximum accumulation of mRNA occurring prior to cell division and maximum levels of protein occurring during cell division. Overexpression of a N-terminally truncated cyclin B protein lacking the destruction box inhibits cell growth by arresting cell division during mitosis. The gene is present as a single copy in the Dictyostelium genome and there is no evidence for any other highly related cyclin B genes.


1985 ◽  
Vol 77 (1) ◽  
pp. 225-239
Author(s):  
P.J. McAuley

When green hydra were starved, cell division of the symbiotic algae within their digestive cells was inhibited, but algal cell growth, measured as increase in either mean volume or protein content per cell, was not. Therefore, control of algal division by the host digestive cells must be effected by direct inhibition of algal mitosis rather than by controlling algal cell growth. The number of algae per digestive cell increased slightly during starvation, eventually reaching a new stable level. A number of experiments demonstrated that although there was a relationship between host cell and algal mitosis, this was not causal: the apparent entrainment of algal mitosis to that of the host cells could be disrupted. Thus, there was a delay in algal but not host cell mitosis when hydra were fed after prolonged starvation, and algae repopulated starved hydra with lower than normal numbers of algae (reinfected aposymbionts or hydra transferred to light after growth in continuous darkness). Two experiments demonstrated a direct stimulation of algal cell division by host feeding. Relationships of algal and host cell mitosis to numbers of Artemia digested per hydra were different, and in hydra fed extracted Artemia algal, but not host cell, mitosis was reduced in comparison to that in control hydra fed live shrimp. It is proposed that algal division may be dependent on a division factor, derived from host digestion of prey, whose supply is controlled by the host cells. Numbers of algae per cell would be regulated by competition for division factor, except at host cell mitosis, when the algae may have temporarily uncontrolled access to host pools of division factor. The identity of the division factor is not known, but presumably is a metabolite needed by both host cells and algae.


Sign in / Sign up

Export Citation Format

Share Document