Inositol Phospholipid Metabolism During and Following Synaptic Activation: Role of Adenosine

1989 ◽  
Vol 52 (3) ◽  
pp. 797-806 ◽  
Author(s):  
R. Rubio ◽  
M. Bencherif ◽  
R. M. Berne
1985 ◽  
Vol 34 (11) ◽  
pp. 1931-1935 ◽  
Author(s):  
Takenawa Tadaomi ◽  
J. Ishitoya ◽  
Y. Homma ◽  
M. Kato ◽  
Y. Nagai

1991 ◽  
Vol 273 (1) ◽  
pp. 241-243 ◽  
Author(s):  
O B Tysnes ◽  
E Johanessen ◽  
V M Steen

Neomycin was demonstrated to inhibit the binding of thrombin to intact human platelets. The effects of neomycin on both thrombin binding and thrombin-induced changes in inositol phospholipid metabolism could be reproduced by the thrombin antagonist hirudin. We propose that neomycin inhibits thrombin-induced platelet activation by interference with the cellular receptor.


Diagnostics ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2116
Author(s):  
Marija Geroldinger-Simić ◽  
Thomas Bögl ◽  
Markus Himmelsbach ◽  
Norbert Sepp ◽  
Wolfgang Buchberger

Systemic sclerosis (SSc) is an autoimmune disease with fibrosis of the skin and/or internal organs, causing a decrease in quality of life and survival. There is no causative therapy, and the pathophysiology of the SSc remains unclear. Studies showed that lipid metabolism was relevant for autoimmune diseases, but little is known about the role of lipids in SSc. In the present study, we sought to explore the phospholipid profile of SSc by using the lipidomics approach. We also aimed to analyze lipidomics results for different clinical manifestations of SSc. Experiments were performed using high-performance liquid chromatography coupled to mass spectrometry for the lipidomic profiling of plasma samples from patients with SSc. Our study showed, for the first time, significant changes in the level of phospholipids such as plasmalogens and sphingomyelins from the plasma of SSc patients as compared to controls. Phosphatidylcholine plasmalogens species and sphingomyelins were significantly increased in SSc patients as compared to controls. Our results also demonstrated a significant association of changes in the metabolism of phospholipids (phosphatidylcholine and phosphatidylethanolamine plasmalogens species and sphingomyelins) with different clinical manifestations of SSc. Further lipidomic studies might lead to the detection of lipids as new biomarkers or therapeutic targets of SSc.


1990 ◽  
Vol 10 (3) ◽  
pp. 923-929
Author(s):  
B T Pan ◽  
G M Cooper

Microinjection of Xenopus oocytes with ras protein (p21) was used to investigate the role of phospholipid metabolism in ras-induced meiotic maturation. Induction of meiosis by ras was compared with induction by progesterone, insulin, and the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA). Neomycin, which specifically binds to phosphatidylinositides and inhibits their metabolism, blocked meiotic maturation induced by ras or insulin but not by progesterone or TPA. In addition, p21 and TPA, but not insulin or progesterone, stimulated the incorporation of 32Pi into oocyte lipids. ras protein specifically stimulated 32P incorporation into phosphatidylinositides, whereas both ras and TPA stimulated 32P incorporation into phosphatidylcholine and phosphatidylethanolamine. The stimulatory effect of p21 on phosphatidylinositide metabolism correlated with the dose response and kinetics of ras-induced meiotic maturation. In addition, the ras oncogene protein was more potent than the proto-oncogene protein both in inducing meiotic maturation and in stimulating phosphatidylinositide metabolism. These results indicate that phosphatidylinositide turnover is required for ras-induced meiosis and suggest that phosphatidylinositide-derived second messengers mediate the biological activity of ras in Xenopus oocytes.


Sign in / Sign up

Export Citation Format

Share Document