Activation of c-fos by lipopolysaccharide in glial cells via p38 mitogen-activated protein kinase-dependent activation of serum or cyclic AMP/calcium response element

2005 ◽  
Vol 92 (4) ◽  
pp. 915-924 ◽  
Author(s):  
Anastasia Simi ◽  
Ylva Edling ◽  
Magnus Ingelman-Sundberg ◽  
Niclas Tindberg
2004 ◽  
Vol 24 (7) ◽  
pp. 3057-3067 ◽  
Author(s):  
Wenhong Cao ◽  
Kiefer W. Daniel ◽  
Jacques Robidoux ◽  
Pere Puigserver ◽  
Alexander V. Medvedev ◽  
...  

ABSTRACT It is well established that catecholamine-stimulated thermogenesis in brown fat requires β-adrenergic elevations in cyclic AMP (cAMP) to increase expression of the uncoupling protein 1 (UCP1) gene. However, little is known about the downstream components of the signaling cascade or the relevant transcription factor targets thereof. Here we demonstrate that cAMP- and protein kinase A-dependent activation of p38 mitogen-activated protein kinase (MAPK) in brown adipocytes is an indispensable step in the transcription of the UCP1 gene in mice. By phosphorylating activating transcription factor 2 (ATF-2) and peroxisome proliferator-activated receptor gamma (PPARγ) coativator 1α (PGC-1α), members of two distinct nuclear factor families, p38 MAPK controls the expression of the UCP1 gene through their respective interactions with a cAMP response element and a PPAR response element that both reside within a critical enhancer motif of the UCP1 gene. Activation of ATF-2 by p38 MAPK additionally serves as the cAMP sensor that increases expression of the PGC-1α gene itself in brown adipose tissue. In conclusion, our findings illustrate that by orchestrating the activity of multiple transcription factors, p38 MAPK is a central mediator of the cAMP signaling mechanism of brown fat that promotes thermogenesis.


2005 ◽  
Vol 25 (11) ◽  
pp. 4792-4803 ◽  
Author(s):  
J. Julie Wu ◽  
Lei Zhang ◽  
Anton M. Bennett

ABSTRACT The mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1) is an immediate-early gene comprised of a dual-specificity phosphatase domain and a noncatalytic NH2 terminus. Here, we show that the NH2 terminus of MKP-1, containing the cdc25 homology domains A (CH2A) and B (CH2B), mediates MKP-1 nuclear targeting and modulates MAPK-mediated gene expression. An LXXLL motif which is known to mediate protein-protein interactions with nuclear-targeted hormone receptors was identified proximal to the CH2A domain of MKP-1. The NH2 terminus alone of MKP-1 containing this LXXLL motif was sufficient to direct nuclear targeting, and mutating this motif to LXXAA resulted in the exclusion of MKP-1 from the nucleus. We found that the LXXLL motif proximal to the CH2A domain was present in other nuclear-localized MKPs but was absent in MKPs that localized to the cytoplasm. These data suggest that this LXXLL motif confers nuclear targeting properties to the MKPs. The NH2 terminus of MKP-1 was also found to inhibit the activation of the serum response element (SRE) by preventing MAPK-mediated phosphorylation of the regulatory serine 383 residue on Elk-1. Moreover, we show that MKP-1 plays a major role in the attenuation of serum-induced SRE activity, since MKP-1 null fibroblasts exhibited enhanced SRE activity in response to serum compared with wild-type fibroblasts. The NH2 terminus of MKP-1, when reconstituted into MKP-1 null fibroblasts to levels similar to endogenous MKP-1 following serum stimulation, reduced serum-mediated SRE activity. Collectively, these data reveal novel roles for the NH2 terminus of MKP-1 in nuclear targeting and transcriptional regulation.


2006 ◽  
Vol 83 (5) ◽  
pp. 1108-1117 ◽  
Author(s):  
Yoriko Nakanishi ◽  
Makoto Nakamura ◽  
Hirokazu Mukuno ◽  
Akiyasu Kanamori ◽  
Gail M. Seigel ◽  
...  

Blood ◽  
1999 ◽  
Vol 93 (2) ◽  
pp. 537-553 ◽  
Author(s):  
Angel Wai-mun Lee

Abstract Colony-stimulating factors (CSFs) promote the proliferation, differentiation, commitment, and survival of myeloid progenitors, whereas cyclic AMP (cAMP)-mediated signals frequently induce their growth arrest and apoptosis. The ERK/mitogen-activated protein kinase (MAPK) pathway is a target for both CSFs and cAMP. We investigated how costimulation by cAMP and colony-stimulating factor-1 (CSF-1) or interleukin-3 (IL-3) modulates MAPK in the myeloid progenitor cell line, 32D. cAMP dramatically increased ERK activity in the presence of CSF-1 or IL-3. IL-3 also synergized with cAMP to activate ERK in another myeloid cell line, FDC-P1. The increase in ERK activity was transmitted to a downstream target, p90rsk. cAMP treatment of 32D cells transfected with oncogenic Ras was found to recapitulate the superactivation of ERK seen with cAMP and CSF-1 or IL-3. ERK activation in the presence of cAMP did not appear to involve any of the Raf isoforms and was blocked by expression of dominant-negative MEK1 or treatment with a MEK inhibitor, PD98059. Although cAMP had an overall inhibitory effect on CSF-1–mediated proliferation and survival, the inhibition was markedly increased if ERK activation was blocked by PD98059. These findings suggest that upregulation of the ERK pathway is one mechanism induced by CSF-1 and IL-3 to protect myeloid progenitors from the growth-suppressive and apoptosis-inducing effects of cAMP elevations.


Sign in / Sign up

Export Citation Format

Share Document