Soil organic carbon and nutrient content in aggregate-size fractions of a subtropical rice soil under variable tillage

2010 ◽  
Vol 27 (1) ◽  
pp. 28-35 ◽  
Author(s):  
X. Jiang ◽  
Y. Hu ◽  
J. H. Bedell ◽  
D. Xie ◽  
A. L. Wright
Author(s):  
Bassey Udom ◽  
Joshua Ogunwole ◽  
Chima Wokocha

<p><span>Protection of soil organic carbon and acid-hydrolyzable carbohydrates in aggregate-size fractions is important for appraising soil degradation and aggregation under land use types. Aggregate-associated soil organic carbon (SOC) and acid-hydrolyzable carbohydrates (R-CHO) in bulk soils and aggregate-size fractions of a sandy loam soil under Alchornea bush, Rubber, Oil palm and Teak plantations in southern Nigeria were studied. Results revealed significant differences in aggregate-associated SOC and R-CHO, bulk densities, total porosity, soil organic carbon stock and aggregate stability among the land use types. Greater SOC was stored in macro-aggregates &gt;0.25 mm, while greater R-CHO was occluded in micro-aggregates &lt;0.25 mm (p&lt;0.05). The highest mean weight diameter (MWD) was 1.01 mm in Alchornea soils and 0.92 mm in Oil palm plantation at 0-15 cm topsoil. Soil organic carbon stock in 0-15 cm topsoil was 77.7, 81.8, 92.2, and 67.5 kg C ha<sup>-1</sup> in Alchornea, Rubber, Oil palm, and Teak soils, respectively. Relationships showed a positive linear correlations between MWD and SOC (r = 0.793, p &lt; 0.05) and R-CHO (r = 0.789. p &lt; 0.05). Alchornea bush and Oil palm plantation increased macro-aggregate formation and macro-pores &gt;5 µm, therefore they have greater potentials to boost protection of SOC in soil macro-aggregates.</span></p>


Soil Research ◽  
1986 ◽  
Vol 24 (2) ◽  
pp. 293 ◽  
Author(s):  
RC Dalal ◽  
RJ Mayer

Distribution of soil organic carbon in sand-, silt- and clay-size fractions during cultivation for periods ranging from 20 to 70 years was studied in six major soils used for cereal cropping in southern Queensland. Particle-size fractions were obtained by dispersion in water using cation exchange resin, sieving and sedimentation. In the soils' virgin state no single particle-size fraction was found to be consistently enriched as compared to the whole soil in organic C in all six soils, although the largest proportion (48%) of organic C was in the clay-size fraction; silt and sand-size fractions contained remaining organic C in equal amounts. Upon cultivation, the amounts of organic C declined from all particle-size fractions in most soils, although the loss rates differed considerably among different fractions and from the whole soil. The proportion of the sand-size fraction declined rapidly (from 26% to 12% overall), whereas that of the clay-size fraction increased from 48% to 61% overall. The proportion of silt-size organic C was least affected by cultivation in most soils. It was inferred, therefore, that the sand-size organic matter is rapidly lost from soil, through mineralization as well as disintegration into silt-size and clay-size fractions, and that the clay fraction provides protection for the soil organic matter against microbial and enzymic degradation.


2021 ◽  
Vol 54 (2) ◽  
pp. 285-290
Author(s):  
V. A. Kholodov ◽  
V. P. Belobrov ◽  
N. V. Yaroslavtseva ◽  
M. A. Yashin ◽  
S. A. Yudin ◽  
...  

Author(s):  
Yan Zhang ◽  
Xiujun Li ◽  
Ed Gregorich ◽  
Neil McLaughlin ◽  
Xiaoping Zhang ◽  
...  

2014 ◽  
Vol 392 (1-2) ◽  
pp. 17-25 ◽  
Author(s):  
Tida Ge ◽  
Chang Liu ◽  
Hongzhao Yuan ◽  
Ziwei Zhao ◽  
Xiaohong Wu ◽  
...  

2020 ◽  
Vol 12 (4) ◽  
pp. 478-483
Author(s):  
Surya Prabha A.C. ◽  
Velumani R. ◽  
Senthivelu M. ◽  
Arulmani K. ◽  
Pragadeesh S.

Soil organic carbon (SOC) plays a vital role in soil fertility and is important for its contributions to mitigation and adaptation to climate change. The present study was undertaken to estimate the SOC stock in soils under different land uses of Cauvery Delta zone of Tamil Nadu. Four different land uses were selected for the study viz, Forests, Agriculture, Agro-forestry and Plantations. Soil samples were collected from Madukkur and Kalathur soil series of Cauvery Delta zone for soil carbon analysis. The soil samples were fractionated into three aggregate size classes viz., macro-aggregates (250-2000µm), micro-aggregates (53-250 µm) and silt and clay sized fraction (<53 µm). At 0-30 cm depth, the forest land use stored the maximum SOC stock in the different size fractions viz. macro-sized fraction (73.0 Mg ha-1), a micro-sized fraction (76.0 Mg ha-1) and silt+clay sized fraction (77.0 Mg ha-1) in Madukkur series. Agriculture land use registered the lowest SOC stock. Among the different size fractions, silt+clay sized fraction (< 53 µm) retained the maximum SOC in all the land uses. In Kalathur series also, maximum soil organic carbon stock was recorded in forest land use. The data generated in the study will be beneficial to the user groups viz., farmers in identifying the most suitable land use for enhancing the storage of soil organic carbon thereby improving yields of crops and trees.


Sign in / Sign up

Export Citation Format

Share Document