Combination Treatment with Basic Fibroblast Growth Factor and Artificial Dermis Improves Complex Wounds in Patients with a History of Long-Term Systemic Corticosteroid Use

2009 ◽  
Vol 35 (9) ◽  
pp. 1422-1425 ◽  
Author(s):  
Masaki Fujioka
Blood ◽  
1991 ◽  
Vol 77 (5) ◽  
pp. 954-960 ◽  
Author(s):  
EL Wilson ◽  
DB Rifkin ◽  
F Kelly ◽  
MJ Hannocks ◽  
JL Gabrilove

Abstract We previously showed that basic fibroblast growth factor (bFGF) is a potent mitogen for human bone marrow (BM) stromal cells and significantly delays their senescence. In the present study, we demonstrated that low concentrations of bFGF (0.2 to 2 ng/mL) enhance myelopoiesis in long-term human BM culture. Addition of bFGF to long- term BM cultures resulted in an increase in (a) the number of nonadherent cells (sixfold), particularly those of the neutrophil granulocyte series; (b) the number of nonadherent granulocyte colony- stimulating factor (G-CSF)- and granulocyte-macrophage colony- stimulating factor (GM-CSF)-responsive progenitor cells; (c) the number of adherent foci of hematopoietic cells (10-fold); and (d) the number of progenitor cells in the adherent stromal cell layer. These effects were not noted with higher concentrations of bFGF (20 ng/mL). Thus, low concentrations of bFGF effectively augment myelopoiesis in human long- term BM cultures, and bFGF may therefore be a regulator of the hematopoietic system in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document