Transmissible Spongiform Encephalopathy Risk Assessment: The UK experience

Risk Analysis ◽  
2005 ◽  
Vol 25 (3) ◽  
pp. 519-532 ◽  
Author(s):  
Eric P. M. Grist
2013 ◽  
Vol 94 (8) ◽  
pp. 1922-1932 ◽  
Author(s):  
Rona Wilson ◽  
Declan King ◽  
Nora Hunter ◽  
Wilfred Goldmann ◽  
Rona M. Barron

Bovine spongiform encephalopathy (BSE) is a fatal neurodegenerative disorder of cattle, and its transmission to humans through contaminated food is thought to be the cause of the variant form of Creutzfeldt–Jakob disease. BSE is believed to have spread from the recycling in cattle of ruminant tissue in meat and bone meal (MBM). However, during this time, sheep and goats were also exposed to BSE-contaminated MBM. Both sheep and goats are experimentally susceptible to BSE, and while there have been no reported natural BSE cases in sheep, two goat BSE field cases have been documented. While cases of BSE are rare in small ruminants, the existence of scrapie in both sheep and goats is well established. In the UK, during 2006–2007, a serious outbreak of clinical scrapie was detected in a large dairy goat herd. Subsequently, 200 goats were selected for post-mortem examination, one of which showed biochemical and immunohistochemical features of the disease-associated prion protein (PrPTSE) which differed from all other infected goats. In the present study, we investigated this unusual case by performing transmission bioassays into a panel of mouse lines. Following characterization, we found that strain properties such as the ability to transmit to different mouse lines, lesion profile pattern, degree of PrP deposition in the brain and biochemical features of this unusual goat case were neither consistent with goat BSE nor with a goat scrapie herdmate control. However, our results suggest that this unusual case has BSE-like properties and highlights the need for continued surveillance.


Marine Drugs ◽  
2021 ◽  
Vol 19 (8) ◽  
pp. 405
Author(s):  
Zara Ahmed ◽  
Lydia C. Powell ◽  
Navid Matin ◽  
Andrew Mearns-Spragg ◽  
Catherine A. Thornton ◽  
...  

Osteoarthritis (OA) is a multifactorial disease leading to degeneration of articular cartilage, causing morbidity in approximately 8.5 million of the UK population. As the dense extracellular matrix of articular cartilage is primarily composed of collagen, cartilage repair strategies have exploited the biocompatibility and mechanical strength of bovine and porcine collagen to produce robust scaffolds for procedures such as matrix-induced chondrocyte implantation (MACI). However, mammalian sourced collagens pose safety risks such as bovine spongiform encephalopathy, transmissible spongiform encephalopathy and possible transmission of viral vectors. This study characterised a non-mammalian jellyfish (Rhizostoma pulmo) collagen as an alternative, safer source in scaffold production for clinical use. Jellyfish collagen demonstrated comparable scaffold structural properties and stability when compared to mammalian collagen. Jellyfish collagen also displayed comparable immunogenic responses (platelet and leukocyte activation/cell death) and cytokine release profile in comparison to mammalian collagen in vitro. Further histological analysis of jellyfish collagen revealed bovine chondroprogenitor cell invasion and proliferation in the scaffold structures, where the scaffold supported enhanced chondrogenesis in the presence of TGFβ1. This study highlights the potential of jellyfish collagen as a safe and biocompatible biomaterial for both OA repair and further regenerative medicine applications.


2008 ◽  
Vol 137 (6) ◽  
pp. 775-786 ◽  
Author(s):  
J. E. TRUSCOTT ◽  
N. M. FERGUSON

SUMMARYScrapie is a fatal transmissible spongiform encephalopathy (TSE) of sheep, endemic in the UK for centuries. Interest in the disease has been heightened over the last decade by the possibility of the related BSE being transmissible to and between sheep and a range of control interventions has been proposed and implemented. In this paper, we examined the effect of these policies and their components on observed case rate, susceptible allele frequency and R0 within the framework of a large simulation model of the British sheep population and its breeding and trading structure. We compared interventions with the natural fade-out of scrapie in the population through loss of susceptible genotypes in the absence of control. We compare the results of interventions with the natural course of the scrapie epidemic. Our model suggested that scrapie will persist in the national flock for 300–400 years with the impact on gene frequencies confined largely to high case-rate breeds, such as Shetland and Swaledale. We found the National Scrapie Plan (NSP) to be the most effective in terms of the removal of both susceptible genotypes and scrapie from the population. Complete eradication of scrapie can be achieved within 32 years (95% CI 23–43 years). The Compulsory Scrapie Flock Scheme (CSFS) is as effective as the NSP in reducing the observed case rate but has a limited impact on the frequencies of susceptible genotypes in the population overall. In combination with the NSP, eradication of scrapie is achieved >10 years faster. Of the components of the CSFS, the breeding and culling aspects are each almost as effective as the full policy, with trading restrictions contributing little. We have speculated on the impact of control measures on the possibility BSE infection within the national flock by examining their effect on flock R0 for BSE across different breeds.


Author(s):  
Jonathan D F Wadsworth ◽  
Susan Joiner ◽  
Jacqueline M Linehan ◽  
Kezia Jack ◽  
Huda Al-Doujaily ◽  
...  

Abstract Chronic wasting disease (CWD) is the transmissible spongiform encephalopathy or prion disease affecting cervids. In 2016, the first cases of CWD were reported in Europe in Norwegian wild reindeer and moose. The origin and zoonotic potential of these new prion isolates remain unknown. In this study to investigate zoonotic potential we inoculated brain tissue from CWD-infected Norwegian reindeer and moose into transgenic mice overexpressing human prion protein. After prolonged postinoculation survival periods no evidence for prion transmission was seen, suggesting that the zoonotic potential of these isolates is low.


Sign in / Sign up

Export Citation Format

Share Document