scholarly journals Erratum to: Gene expression demonstrates increased resilience toward harmful inflammatory stimuli in the proliferating epidermis of human skin wounds

2011 ◽  
Vol 20 (9) ◽  
pp. 775-775
2009 ◽  
Vol 19 (8) ◽  
pp. e329-e332 ◽  
Author(s):  
K. Markus Roupé ◽  
Per Alberius ◽  
Artur Schmidtchen ◽  
Ole E. Sørensen

2021 ◽  
Vol 22 (4) ◽  
pp. 2160
Author(s):  
Kyunghee Kim ◽  
Jisue Kim ◽  
Hyoungseob Kim ◽  
Gun Yong Sung

Owing to the prohibition of cosmetic animal testing, various attempts have recently been made using skin-on-a-chip (SOC) technology as a replacement for animal testing. Previously, we reported the development of a pumpless SOC capable of drug testing with a simple drive using the principle that the medium flows along the channel by gravity when the chip is tilted using a microfluidic channel. In this study, using pumpless SOC, instead of drug testing at the single-cell level, we evaluated the efficacy of α-lipoic acid (ALA), which is known as an anti-aging substance in skin equivalents, for skin tissue and epidermal structure formation. The expression of proteins and changes in genotyping were compared and evaluated. Hematoxylin and eosin staining for histological analysis showed a difference in the activity of fibroblasts in the dermis layer with respect to the presence or absence of ALA. We observed that the epidermis layer became increasingly prominent as the culture period was extended by treatment with 10 μM ALA. The expression of epidermal structural proteins of filaggrin, involucrin, keratin 10, and collagen IV increased because of the effect of ALA. Changes in the epidermis layer were noticeable after the ALA treatment. As a result of aging, damage to the skin-barrier function and structural integrity is reduced, indicating that ALA has an anti-aging effect. We performed a gene analysis of filaggrin, involucrin, keratin 10, integrin, and collagen I genes in ALA-treated human skin equivalents, which indicated an increase in filaggrin gene expression after ALA treatment. These results indicate that pumpless SOC can be used as an in vitro skin model similar to human skin, protein and gene expression can be analyzed, and it can be used for functional drug tests of cosmetic materials in the future. This technology is expected to contribute to the development of skin disease models.


2018 ◽  
Vol 19 (11) ◽  
pp. 3349 ◽  
Author(s):  
Jin Namkoong ◽  
Dale Kern ◽  
Helen Knaggs

Since the skin is the major protective barrier of the body, it is affected by intrinsic and extrinsic factors. Environmental influences such as ultraviolet (UV) irradiation, pollution or dry/cold air are involved in the generation of radical oxygen species (ROS) and impact skin aging and dermal health. Assessment of human skin gene expression and other biomarkers including epigenetic factors are used to evaluate the biological/molecular activities of key compounds in cosmetic formulas. The objective of this study was to quantify human gene expression when epidermal full-thickness skin equivalents were exposed to: (a) a mixture of betaine, pentylene glycol, Saccharomyces cerevisiae and Rhodiola rosea root extract (BlendE) for antioxidant, skin barrier function and oxidative stress (with hydrogen peroxide challenge); and (b) a mixture of Narcissus tazetta bulb extract and Schisandra chinensis fruit extract (BlendIP) for various biomarkers and microRNA analysis. For BlendE, several antioxidants, protective oxidative stress biomarkers and many skin barrier function parameters were significantly increased. When BlendE was evaluated, the negative impact of the hydrogen peroxide was significantly reduced for the matrix metalloproteinases (MMP 3 and MMP 12), the skin aging and oxidative stress biomarkers, namely FBN2, ANXA1 and HGF. When BlendIP was tested for cell proliferation and dermal structural components to enhance the integrity of the skin around the eyes: 8 growth factors, 7 signaling, 7 structural/barrier function and 7 oxidative stress biomarkers were significantly increased. Finally, when BlendIP was tested via real-time RT-PCR for microRNA expression: miR-146a, miR-22, miR155, miR16 and miR21 were all significantly increased over control levels. Therefore, human skin gene expression studies are important tools to assess active ingredient compounds such as plant extract blends to advance dermal hypotheses toward validating cosmetic formulations with botanical molecules.


2019 ◽  
Vol 13 (11) ◽  
pp. 2018-2030
Author(s):  
Thuany Alencar‐Silva ◽  
Alessandra Zonari ◽  
Daniel Foyt ◽  
Mylieneth Gang ◽  
Robert Pogue ◽  
...  

1997 ◽  
Vol 110 (5) ◽  
pp. 240-243 ◽  
Author(s):  
R. Hausmann ◽  
A. Nerlich ◽  
J. T�bel ◽  
P. Betz ◽  
I. Wiest

1993 ◽  
Vol 106 (1) ◽  
pp. 31-34 ◽  
Author(s):  
P. Betz ◽  
A. Nerlich ◽  
J. Wilske ◽  
J. T�bel ◽  
R. Penning ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document