Influence of relative humidity and gaseous ammonia on the nicotine sorption to indoor materials

Indoor Air ◽  
2011 ◽  
Vol 22 (1) ◽  
pp. 54-63 ◽  
Author(s):  
M. Ongwandee ◽  
P. Sawanyapanich
2021 ◽  
Vol 21 (15) ◽  
pp. 12091-12111
Author(s):  
Rebecca D. Kutzner ◽  
Juan Cuesta ◽  
Pascale Chelin ◽  
Jean-Eudes Petit ◽  
Mokhtar Ray ◽  
...  

Abstract. Ammonia (NH3) is a key precursor for the formation of atmospheric secondary inorganic particles, such as ammonium nitrate and sulfate. Although the chemical processes associated with the gas-to-particle conversion are well known, atmospheric concentrations of gaseous ammonia are still scarcely characterized. However, this information is critical, especially for processes concerning the equilibrium between ammonia and ammonium nitrate, due to the semivolatile character of the latter. This study presents an analysis of the diurnal cycle of atmospheric ammonia during a pollution event over the Paris megacity region in spring 2012 (5 d in late March 2012). Our objective is to analyze the link between the diurnal evolution of surface NH3 concentrations and its integrated column abundance, meteorological variables and relevant chemical species involved in gas–particle partitioning. For this, we implement an original approach based on the combined use of surface and total column ammonia measurements. These last ones are derived from ground-based remote sensing measurements performed by the Observations of the Atmosphere by Solar Infrared Spectroscopy (OASIS) Fourier transform infrared observatory at an urban site over the southeastern suburbs of the Paris megacity. This analysis considers the following meteorological variables and processes relevant to the ammonia pollution event: temperature, relative humidity, wind speed and direction, and the atmospheric boundary layer height (as indicator of vertical dilution during its diurnal development). Moreover, we study the partitioning between ammonia and ammonium particles from concomitant measurements of total particulate matter (PM) and ammonium (NH4+) concentrations at the surface. We identify the origin of the pollution event as local emissions at the beginning of the analyzed period and advection of pollution from Benelux and western Germany by the end. Our results show a clearly different diurnal behavior of atmospheric ammonia concentrations at the surface and those vertically integrated over the total atmospheric column. Surface concentrations remain relatively stable during the day, while total column abundances show a minimum value in the morning and rise steadily to reach a relative maximum in the late afternoon during each day of the spring pollution event. These differences are mainly explained by vertical mixing within the boundary layer, provided that this last one is considered well mixed and therefore homogeneous in ammonia concentrations. This is suggested by ground-based measurements of vertical profiles of aerosol backscatter, used as tracer of the vertical distribution of pollutants in the atmospheric boundary layer. Indeed, the afternoon enhancement of ammonia clearly seen by OASIS for the whole atmospheric column is barely depicted by surface concentrations, as the surface concentrations are strongly affected by vertical dilution within the rising boundary layer. Moreover, the concomitant occurrence of a decrease in ammonium particle concentrations and an increase in gaseous ammonia abundance suggests the volatilization of particles for forming ammonia. Furthermore, surface observations may also suggest nighttime formation of ammonium particles from gas-to-particle conversion, for relative humidity levels higher than the deliquescence point of ammonium nitrate.


1999 ◽  
Author(s):  
Juan R. Morales G. ◽  
Araceli Lara V. ◽  
Arturo Lizardi R. ◽  
Raymundo López C. ◽  
Alen Díaz C.

Abstract In the absorption-evaporative cooling refrigerator, the evaporator works with liquid butane and a gaseous ammonia-butane mixture. In order to design such a refrigerator the mixture behavior has to be known. In this paper such behavior is determined first considering an ideal gases mixture and no ammonia in the liquid butane. For this purpose a psychrometric chart for a pressure of 105 kPa is obtained. To validate these assumptions a second model is chosen that considers a certain amount of non-ideality. The selected model is represented by the equations of Peng-Robinson. The results obtained for the equilibrium conditions are compared with the 100% relative humidity of the psychrometric chart. A satisfactory agreement is found.


2020 ◽  
Author(s):  
Rebecca D. Kutzner ◽  
Juan Cuesta ◽  
Pascale Chelin ◽  
Jean-Eudes Petit ◽  
Mokhtar Ray ◽  
...  

Abstract. Ammonia (NH3) is a key precursor for the formation of atmospheric secondary inorganic particles, such as ammonium nitrate and sulfate. Although the chemical processes associated with the gas-to-particle conversion are well known, atmospheric concentrations of gaseous ammonia are still scarcely characterized. This information is however critical especially for processes concerning the equilibrium between ammonia and ammonium nitrate, due to the semi-volatile character of the latter one. This study presents an analysis of the diurnal cycle of atmospheric ammonia during a pollution event over the Paris megacity region in spring 2012 (five days in late March 2012). Our objective is to analyze the link between the diurnal evolution of surface NH3 concentrations and its integrated column abundance, meteorological variables and relevant chemical species involved in gas/particle partitioning. For this, we implement an original approach based on the combined use of surface and total column ammonia measurements. These last ones are derived from ground-based remote-sensing measurements performed by the Observations of the Atmosphere by Solar Infrared Spectroscopy (OASIS) Fourier transform infrared observatory at an urban site over the southeastern suburbs of the Paris megacity. This analysis considers the following meteorological variables relevant to the ammonia pollution event: temperature, relative humidity, wind speed and direction and vertical dilution in the atmospheric boundary layer. Moreover, we study the partitioning between ammonia and ammonium particles from concomitant measurements of total particulate matter (PM) and ammonium (NH4+) concentrations at the surface. We identify the origin of the pollution event as local emissions at the beginning of the analyzed period and advection of pollution from the Benelux and west Germany region by the end. Our results show a clearly different diurnal behavior of atmospheric ammonia concentrations at the surface and those vertically integrated over the total atmospheric column. Surface concentrations remain relatively stable during the day, while total column abundances show a minimum value in the morning and rise steadily to reach a relative maximum in the late afternoon during the spring pollution event. These differences are mainly explained by vertical mixing within the boundary layer, as suggested by ground-based measurements of vertical profiles of aerosol backscatter, used as tracer of the vertical distribution of pollutants in the atmospheric boundary layer. Indeed, the afternoon enhancement of ammonia clearly seen by OASIS for the whole atmospheric column is barely depicted by surface concentrations, as the latter are strongly affected by vertical dilution within the rising boundary layer. Moreover, the concomitant occurrence of a decrease of ammonium particle concentrations and an increase of gaseous ammonia abundance suggests the volatilization of particles for forming ammonia. Furthermore, surface observations may also suggest night-time formation of ammonium particles from gas-to-particle conversion, for relative humidity levels higher than the deliquescence point of ammonium nitrate.


2018 ◽  
Vol 24 (1) ◽  
Author(s):  
LAKSHMI CHOUDHARY ◽  
PRABHAWATI PRABHAWATI

Prevalence of soil transmitted helminthes infections in apparently healthy school going children and other 528 people of different districts of Koshi regions of North Bihar were evaluated. Over all incidences of STHs infection was 39.39% during study. High incidence of STH was seen in the rainy season i.e., in the month of July and August, September, significantly higher (P<0.05) .The incidence of Ascaris lumbricoides was highest in the month of August (18.64%). The month of September was 15.25% followed by that of July (14.4%) and October with 10.16%. Also the incidence of hookworm registered the highest incidence in the month of June (19.27%) and lowest in the month of December (4.82%) during the study period. However prevalence of Trichuris trichiura was negligible and it was almost nil in the most of the months but was highest in month of September with 28.57% and lowest in October with 14.00% The climatic factors are responsible for soil transmitted helminthes which are temperature, rainfall and relative humidity. Ascariasis, Trichuriasis and Ancyclostomiasis (Hookworm infection) are found to be endemic in this region.


2019 ◽  
Vol 25 (1) ◽  
Author(s):  
MASROOR ALI KHAN ◽  
KHALID AL GHAMDI ◽  
JAZEM A. MEHYOUB ◽  
RAKHSHAN KHAN

The focus of this study is to find the relationship between El Nino and dengue fever cases in the study area.Mosquito density was recorded with the help of light traps and through aspirators collection. Climate data were obtained from National Meteorology and Environment centre. (Year wise El Nino and La Nina data are according to NOAA & Golden Gate Weather Services). Statistical methods were used to establish the correlation coefficient between different factors. A high significant relationship was observed between Relative Humidity and Dengue fever cases, but Aedes abundance had no significant relationship with either Relative humidity and Temperature. Our conclusion is that the El Nino does not affect the dengue transmission and Aedes mosquito abundance in this region, which is supported by earlier works.


2007 ◽  
Vol 2007 (suppl_26) ◽  
pp. 417-422 ◽  
Author(s):  
W. Oueslati ◽  
M. S. Karmous ◽  
H. Ben Rhaiem ◽  
B. Lanson ◽  
A. Ben Haj Amara

Sign in / Sign up

Export Citation Format

Share Document