The effect of centrifugal force on mRNA levels of collagenase, collagen type-I, tissue inhibitors of metalloproteinases and beta-actin in cultured human periodontal ligament fibroblasts

2004 ◽  
Vol 39 (1) ◽  
pp. 27-32 ◽  
Author(s):  
M. Redlich ◽  
H. Roos ◽  
E. Reichenberg ◽  
B. Zaks ◽  
A. Grosskop ◽  
...  
Cells ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 246 ◽  
Author(s):  
Filippo Randelli ◽  
Alessandra Menon ◽  
Alessio Giai Via ◽  
Manuel Mazzoleni ◽  
Fabio Sciancalepore ◽  
...  

Background: Greater Trochanter Pain Syndrome (GTPS) is the main reason for recalcitrant lateral hip pain. Gluteus medius and minimus tendinopathy plays a key role in this setting. An injectable medical compound containing collagen type I (MD-Tissue, Guna) has been produced with the aim to counteract the physiological and pathological degeneration of tendons. In this study we aimed at characterizing the effect of this medical compound on cultured human gluteal tenocytes, focusing on the collagen turnover pathways, in order to understand how this medical compound could influence tendon biology and healing. Methods: Tenocytes were obtained from gluteal tendon fragments collected in eight patients without any gluteal tendon pathology undergoing total hip replacement through an anterior approach. Cell proliferation and migration were investigated by growth curves and wound healing assay, respectively. The expression of genes and proteins involved in collagen turnover were analysed by real-time PCR, Slot blot and SDS-zymography. Results: Our data show that tenocytes cultured on MD-Tissue, compared to controls, have increased proliferation rate and migration potential. MD-Tissue induced collagen type I (COL-I) secretion and mRNA levels of tissue inhibitor of matrix metalloproteinases (MMP)-1 (TIMP-1). Meanwhile, lysyl hydroxylase 2b and matrix metalloproteinases (MMP)-1 and -2, involved, respectively, in collagen maturation and degradation, were not affected. Conclusions: Considered as a whole, our results suggest that MD-Tissue could induce in tenocytes an anabolic phenotype by stimulating tenocyte proliferation and migration and COL-I synthesis, maturation, and secretion, thus favouring tendon repair. In particular, based on its effect on gluteal tenocytes, MD-Tissue could be effective in the discouraging treatment of GTPS. From now a rigorous clinical investigation is desirable to understand the real clinical potentials of this compound.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Xiaoyu Gu ◽  
Tingting Fang ◽  
Pinfang Kang ◽  
Junfeng Hu ◽  
Ying Yu ◽  
...  

Our study aimed firstly to observe whether ALDH2 was expressed in neonate rat cardiac fibroblasts, then to investigate the effect of activation of ALDH2 on oxidative stress, apoptosis, and fibrosis when cardiac fibroblasts were subjected to high glucose intervention. Cultured cardiac fibroblasts were randomly divided into normal (NG), NG + Alda-1, high glucose (HG), HG + Alda-1, HG + Alda-1 + daidzin, HG + daidzin, and hypertonic groups. Double-label immunofluorescence staining, RT-PCR, and Western blot revealed ALDH2 was expressed in cardiac fibroblasts. Compared with NG, ALDH2 activity and protein expression were reduced, and cardiac fibroblast proliferation, ROS releasing, 4-HNE protein expression, collagen type I and III at mRNA levels, and the apoptosis rate were increased in HG group. While in HG + Alda-1 group, with the increases of ALDH2 activity and protein expression, the cardiac fibroblast proliferation and ROS releasing were decreased, and 4-HNE protein expression, collagen type I and III at mRNA levels, and apoptosis rate were reduced compared with HG group. When treated with daidzin in HG + Alda-1 group, the protective effects were inhibited. Our findings suggested that ALDH2 is expressed in neonate rat cardiac fibroblasts; activation of ALDH2 decreases the HG-induced apoptosis and fibrosis through inhibition of oxidative stress.


1991 ◽  
Vol 39 (1) ◽  
pp. 103-110 ◽  
Author(s):  
J Becker ◽  
D Schuppan ◽  
J P Rabanus ◽  
R Rauch ◽  
U Niechoy ◽  
...  

We examined the ultrastructural localization of collagens Type I, V, VI and of procollagen Type III in decalcified and prefixed specimens of the periodontal ligament and cementum, by immunoelectron microscopy using ultra-thin cryostat sections. Immunostaining for collagen Type I was pronounced on the major cross-striated fibrils entering cementum and in cementum proper, whereas staining for procollagen Type III was almost exclusively observed on the major fibrils in the periodontal ligament situated more remote from cementum. Reactivity for collagen Type V was limited to aggregated, unbanded filamentous material of about 12 nm diameter that was found mainly in larger spaces between bundles of cross-striated collagen fibrils and occasionally on single microfibrils that apparently originated from the ends of the major collagen fibrils, which may support the concept of this collagen as a component of core fibrils. Collagen Type VI was present as microfilaments appearing to interconnect single cross-striated fibrils. In the densely packed fibril bundles of the periodontal ligament, no collagen type VI was detected. Neither Type V or Type VI collagen was observed in cementum.


2012 ◽  
Vol 303 (9) ◽  
pp. L778-L787 ◽  
Author(s):  
Jennifer J. P. Collins ◽  
Elke Kuypers ◽  
Ilias Nitsos ◽  
J. Jane Pillow ◽  
Graeme R. Polglase ◽  
...  

Chorioamnionitis and antenatal corticosteroids mature the fetal lung functionally but disrupt late-gestation lung development. Because Sonic Hedgehog (Shh) signaling is a major pathway directing lung development, we hypothesized that chorioamnionitis and antenatal corticosteroids modulated Shh signaling, resulting in an altered fetal lung structure. Time-mated ewes with singleton ovine fetuses received an intra-amniotic injection of lipopolysaccharide (LPS) and/or maternal intramuscular betamethasone 7 and/or 14 days before delivery at 120 days gestational age (GA) (term = 150 days GA). Intra-amniotic LPS exposure decreased Shh mRNA levels and Gli1 protein expression, which was counteracted by both betamethasone pre- or posttreatment. mRNA and protein levels of fibroblast growth factor 10 and bone morphogenetic protein 4, which are important mediators of lung development, increased 2-fold and 3.5-fold, respectively, 14 days after LPS exposure. Both 7-day and 14-day exposure to LPS changed the mRNA levels of elastin ( ELN) and collagen type I alpha 1 (Col1A1) and 2 (Col1A2), which resulted in fewer elastin foci and increased collagen type I deposition in the alveolar septa. Corticosteroid posttreatment prevented the decrease in ELN mRNA and increased elastin foci and decreased collagen type I deposition in the fetal lung. In conclusion, fetal lung exposure to LPS was accompanied by changes in key modulators of lung development resulting in abnormal lung structure. Betamethasone treatment partially prevented the changes in developmental processes and lung structure. This study provides new insights into clinically relevant prenatal exposures and fetal lung development.


2009 ◽  
Vol 106 (2) ◽  
pp. 468-475 ◽  
Author(s):  
Bridget E. Sullivan ◽  
Chad C. Carroll ◽  
Bozena Jemiolo ◽  
Scott W. Trappe ◽  
S. Peter Magnusson ◽  
...  

Tendon is mainly composed of collagen and an aqueous matrix of proteoglycans that are regulated by enzymes called matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). Although it is known that resistance exercise (RE) and sex influence tendon metabolism and mechanical properties, it is uncertain what structural and regulatory components contribute to these responses. We measured the mRNA expression of tendon's main fibrillar collagens (type I and type III) and the main proteoglycans (decorin, biglycan, fibromodulin, and versican) and the regulatory enzymes MMP-2, MMP-9, MMP-3, and TIMP-1 at rest and after RE. Patellar tendon biopsy samples were taken from six individuals (3 men and 3 women) before and 4 h after a bout of RE and from a another six individuals (3 men and 3 women) before and 24 h after RE. Resting mRNA expression was used for sex comparisons (6 men and 6 women). Collagen type I, collagen type III, and MMP-2 were downregulated ( P < 0.05) 4 h after RE but were unchanged ( P > 0.05) 24 h after RE. All other genes remained unchanged ( P > 0.05) after RE. Women had higher resting mRNA expression ( P < 0.05) of collagen type III and a trend ( P = 0.08) toward lower resting expression of MMP-3 than men. All other genes were not influenced ( P > 0.05) by sex. Acute RE appears to stimulate a change in collagen type I, collagen type III, and MMP-2 gene regulation in the human patellar tendon. Sex influences the structural and regulatory mRNA expression of tendon.


Marine Drugs ◽  
2021 ◽  
Vol 19 (12) ◽  
pp. 693
Author(s):  
Se-In Choi ◽  
Hee-Soo Han ◽  
Jae-Min Kim ◽  
Geonha Park ◽  
Young-Pyo Jang ◽  
...  

Chronic exposure to ultraviolet B (UVB) is a major cause of skin aging. The aim of the present study was to determine the photoprotective effect of a 30% ethanol extract of Eisenia bicyclis (Kjellman) Setchell (EEB) against UVB-induced skin aging. By treating human dermal fibroblasts (Hs68) with EEB after UVB irradiation, we found that EEB had a cytoprotective effect. EEB treatment significantly decreased UVB-induced matrix metalloproteinase-1 (MMP-1) production by suppressing the activation of mitogen-activated protein kinase (MAPK)/activator protein 1 (AP-1) signaling and enhancing the protein expression of tissue inhibitors of metalloproteinases (TIMPs). EEB was also found to recover the UVB-induced degradation of pro-collagen by upregulating Smad signaling. Moreover, EEB increased the mRNA expression of filaggrin, involucrin, and loricrin in UVB-irradiated human epidermal keratinocytes (HaCaT). EEB decreased UVB-induced reactive oxygen species (ROS) generation by upregulating glutathione peroxidase 1 (GPx1) and heme oxygenase-1 (HO-1) expression via nuclear factor erythroid-2-related factor 2 (Nrf2) activation in Hs68 cells. In a UVB-induced HR-1 hairless mouse model, the oral administration of EEB mitigated photoaging lesions including wrinkle formation, skin thickness, and skin dryness by downregulating MMP-1 production and upregulating the expression of pro-collagen type I alpha 1 chain (pro-COL1A1). Collectively, our findings revealed that EEB prevents UVB-induced skin damage by regulating MMP-1 and pro-collagen type I production through MAPK/AP-1 and Smad pathways.


Sign in / Sign up

Export Citation Format

Share Document