The association of platelet-derived growth factor (PDGF) receptor tyrosine phosphorylation to mitogenic response of human osteoblastic cells in vitro

Oral Diseases ◽  
2008 ◽  
Vol 3 (4) ◽  
pp. 236-242 ◽  
Author(s):  
H. Nakanishi ◽  
K. Yamanouchi ◽  
Y. Gotoh ◽  
M. Nagayama
1990 ◽  
Vol 10 (5) ◽  
pp. 2359-2366
Author(s):  
D K Morrison ◽  
D R Kaplan ◽  
S G Rhee ◽  
L T Williams

We investigated the interaction of phospholipase C-gamma (PLC-gamma) with wild-type and mutant forms of the platelet-derived growth factor (PDGF) beta-receptor both in vivo and in vitro. After PDGF treatment of CHO cell lines expressing wild-type or either of two mutant (delta Ki and Y825F) PDGF receptors, PLC-gamma became tyrosine phosphorylated and associated with the receptor proteins. The receptor association and tyrosine phosphorylation of PLC-gamma correlated with the ability of these receptors to mediate ligand-induced phosphatidylinositol turnover. However, both the delta Ki and Y825F mutant receptors were deficient in transmitting mitogenic signals, suggesting that the PDGF-induced tyrosine phosphorylation and receptor association of PLC-gamma are not sufficient to account for the growth-stimulatory activity of PDGF. Wild-type and delta Ki mutant PDGF receptor proteins expressed with recombinant baculovirus vectors also associated in vitro with mammalian PLC-gamma. However, baculovirus-expressed c-fms, v-fms, c-src, and Raf-1 proteins failed to associate with PLC-gamma under similar conditions. Phosphatase treatment of the baculovirus-expressed PDGF receptor greatly decreased its association with PLC-gamma. This requirement for receptor phosphorylation was also observed in vivo, where PLC-gamma could not associate with a mutant PDGF receptor (K602A) defective in autophosphorylation. PLC-gamma also coimmunoprecipitated with two other putative receptor substrates, the serine-threonine kinase Raf-1 and the 85-kilodalton phosphatidylinositol-3' kinase, presumably through its association with the ligand-activated receptor. Furthermore, baculovirus-expressed Raf-1 phosphorylated purified PLC-gamma in vitro at sites which showed increased serine phosphorylation in vivo in response to PDGF. These results suggest that PDGF directly influences PLC activity by inducing the association of PLC-gamma with a receptor signaling complex, resulting in increased tyrosine and serine phosphorylation of PLC-gamma.


1990 ◽  
Vol 10 (5) ◽  
pp. 2359-2366 ◽  
Author(s):  
D K Morrison ◽  
D R Kaplan ◽  
S G Rhee ◽  
L T Williams

We investigated the interaction of phospholipase C-gamma (PLC-gamma) with wild-type and mutant forms of the platelet-derived growth factor (PDGF) beta-receptor both in vivo and in vitro. After PDGF treatment of CHO cell lines expressing wild-type or either of two mutant (delta Ki and Y825F) PDGF receptors, PLC-gamma became tyrosine phosphorylated and associated with the receptor proteins. The receptor association and tyrosine phosphorylation of PLC-gamma correlated with the ability of these receptors to mediate ligand-induced phosphatidylinositol turnover. However, both the delta Ki and Y825F mutant receptors were deficient in transmitting mitogenic signals, suggesting that the PDGF-induced tyrosine phosphorylation and receptor association of PLC-gamma are not sufficient to account for the growth-stimulatory activity of PDGF. Wild-type and delta Ki mutant PDGF receptor proteins expressed with recombinant baculovirus vectors also associated in vitro with mammalian PLC-gamma. However, baculovirus-expressed c-fms, v-fms, c-src, and Raf-1 proteins failed to associate with PLC-gamma under similar conditions. Phosphatase treatment of the baculovirus-expressed PDGF receptor greatly decreased its association with PLC-gamma. This requirement for receptor phosphorylation was also observed in vivo, where PLC-gamma could not associate with a mutant PDGF receptor (K602A) defective in autophosphorylation. PLC-gamma also coimmunoprecipitated with two other putative receptor substrates, the serine-threonine kinase Raf-1 and the 85-kilodalton phosphatidylinositol-3' kinase, presumably through its association with the ligand-activated receptor. Furthermore, baculovirus-expressed Raf-1 phosphorylated purified PLC-gamma in vitro at sites which showed increased serine phosphorylation in vivo in response to PDGF. These results suggest that PDGF directly influences PLC activity by inducing the association of PLC-gamma with a receptor signaling complex, resulting in increased tyrosine and serine phosphorylation of PLC-gamma.


1992 ◽  
Vol 12 (8) ◽  
pp. 3415-3424 ◽  
Author(s):  
W M Kavanaugh ◽  
A Klippel ◽  
J A Escobedo ◽  
L T Williams

The activated platelet-derived growth factor (PDGF) receptor physically associates with p85, a subunit of phosphatidylinositol-3 kinase. Although this interaction may activate phosphatidylinositol-kinase and is crucial for PDGF-induced mitogenesis, it has not been shown whether p85 is modified in the process. p85 contains two SH2 (Src homology) domains, designated SH2-N and SH2-C. Recent experiments have shown that the SH2-C domain alone determines high-affinity binding of p85 to the PDGF receptor. The function of SH2-N, which binds receptors with lower affinity, is unknown. In this study, using a receptor-blotting technique, we find that p85 is modified by PDGF stimulation of intact cells. This modification involves inhibition of binding of the SH2-N region of p85 to the PDGF receptor. Studies with vanadate suggest that tyrosine phosphorylation of p85 is responsible for the modification of p85 detected by receptor blotting. Furthermore, recombinant p85 is modified in a similar manner when it is tyrosine phosphorylated in vitro by PDGF receptors. Tyrosine phosphorylation of p85 does not block binding of the SH2-C domain and therefore does not release p85 from high-affinity binding sites on the receptor in vitro. Instead, phosphorylation may regulate the ability of the SH2-N of p85 to bind to a different portion of the PDGF receptor or to another molecule in the signaling complex. This study provides the first evidence that p85 is tyrosine phosphorylated upon PDGF stimulation of cells and suggests that tyrosine phosphorylation of p85 regulates its activity or its interaction with other proteins.


1988 ◽  
Vol 8 (8) ◽  
pp. 3476-3486 ◽  
Author(s):  
L Claesson-Welsh ◽  
A Eriksson ◽  
A Morén ◽  
L Severinsson ◽  
B Ek ◽  
...  

The structure of the human receptor for platelet-derived growth factor (PDGF) has been deduced through cDNA cloning. A 5.45-kilobase-pair cDNA clone predicts a 1,106-amino-acid polypeptide, including the cleavable signal sequence. The overall amino acid sequence similarity with the murine PDGF receptor is 85%. After transcription of the cDNA and translation in vitro, a PDGF receptor antiserum was used to immunoprecipitate a product of predicted size, which also could be phosphorylated in vitro. Stable introduction of the cDNA into Chinese hamster ovary (CHO) cells led to the expression of a 190-kilodalton component, which was immunoprecipitated by the PDGF receptor antiserum; this most probably represents the mature PDGF receptor. Binding assays with different 125I-labeled dimeric forms of PDGF A and B chains showed that the PDGF receptor expressed in CHO cells bound PDGF-BB and, to a lesser extent, PDGF-AB, but not PDGF-AA.


1989 ◽  
Vol 75 (4) ◽  
pp. 362-366
Author(s):  
Lilia Alberghina ◽  
Renata Zippel ◽  
Enzo Martegani ◽  
Emmapaola Sturani

Platelet derived growth factor (PDGF) interaction with the cells induces rapid tyrosine phosphorylation of the PDGF receptor in a dose dependent manner. At 37 °C phosphorylation of the receptor is followed by its dephosphorylation and internalization. It is observed that the higher the ligand concentration, the more transient is the response, and the observed kinetics are explained by a simple kinetic model. At 4 °C the phosphorylated form of the receptor is more stable; however, if PDGF is dissociated from the cell surface-associated ligand-receptor complexes, the receptors are rapidly dephosphorylated, indicating that phosphatases specific for phosphotyrosine groups are very active within the cells. In fact, addition of orthovanadate stabilizes the phosphorylated form of the receptor and helps in recognizing possible physiological substrates of the PDGF receptor kinase. The expression of PDGF receptors on the cell surface has been investigated under different growth conditions: a positive correlation exists between the amount of PDGF receptors and the duplication times of exponentially growing cultures. Moreover, during exponential growth the PDGF receptors are scarcely expressed, and their number increases reaching a maximal value when the population enters the stationary phase.


1991 ◽  
Vol 278 (2) ◽  
pp. 447-452 ◽  
Author(s):  
R Brambilla ◽  
R Zippel ◽  
E Sturani ◽  
L Morello ◽  
A Peres ◽  
...  

Stimulation in vivo of Swiss 3T3 fibroblasts with platelet-derived growth factor (PDGF) in the presence of orthovanadate induces the tyrosine phosphorylation of a 39 kDa protein, identified as the phosphorylated slow-migrating form of calpactin I (annexin II) heavy chain, p36. In fact, in PDGF-stimulated cells, anti-(calpactin I) antibodies recognize a doublet of bands, p36 and p39, and the latter disappears upon treatment with phosphatase. In many regards phosphorylation of p39 differs from the rapid and transient phosphorylation of the PDGF receptor and of other substrates: (a) it has slower kinetics but is then stable for longer periods of time; (b) it occurs at 37 degrees C but not at 4 degrees C; and (c) whereas most of the tyrosine-phosphorylated proteins are associated with membrane-enriched preparations, membrane association of p39 only occurs in the presence of Ca2+. Moreover, calpactin I leaks out of permeabilized cells at 0.1 microM free Ca2+, whereas it remains associated with the cells at concentrations of Ca2+ greater than or equal to 1 microM. PDGF does not stimulate phosphoinositide turnover (and thus Ca2+ mobilization) at 4 degrees C; thus it can be suggested that the Ca(2+)-dependent translocation of the protein to membrane/cytoskeletal structures is a necessary condition for its phosphorylation. In addition, calpactin I may not be a direct substrate for the PDGF receptor kinase, but rather the substrate of another tyrosine kinase activated by the receptor.


1992 ◽  
Vol 12 (4) ◽  
pp. 1451-1459 ◽  
Author(s):  
A Klippel ◽  
J A Escobedo ◽  
W J Fantl ◽  
L T Williams

Upon stimulation by its ligand, the platelet-derived growth factor (PDGF) receptor associates with the 85-kDa subunit of phosphatidylinositol (PI) 3-kinase. The 85-kDa protein (p85) contains two Src homology 2 (SH2) domains and one SH3 domain. To define the part of p85 that interacts with the PDGF receptor, a series of truncated p85 mutants was analyzed for association with immobilized PDGF receptor in vitro. We found that a fragment of p85 that contains a single Src homology domain, the C-terminal SH2 domain (SH2-C), was sufficient for directing the high-affinity interaction with the receptor. Half-maximal binding of SH2-C to the receptor was observed at an SH2-C concentration of 0.06 nM. SH2-C, like full-length p85, was able to distinguish between wild-type PDGF receptor and a mutant receptor lacking the PI 3-kinase binding site. An excess of SH2-C blocked binding of full-length p85 and PI 3-kinase to the receptor but did not interfere with the binding of two other SH2-containing proteins, phospholipase C-gamma and GTPase-activating protein. These results demonstrate that a region of p85 containing a single SH2 domain accounts both for the high affinity and specificity of binding of PI 3-kinase to the PDGF receptor.


Sign in / Sign up

Export Citation Format

Share Document