scholarly journals Entamoeba histolytica TATA-box binding protein binds to different TATA variants in vitro

FEBS Journal ◽  
2005 ◽  
Vol 272 (6) ◽  
pp. 1354-1366 ◽  
Author(s):  
Guadalupe De Dios-Bravo ◽  
Juan Pedro Luna-Arias ◽  
Ana María Riverón ◽  
José J Olivares-Trejo ◽  
César López-Camarillo ◽  
...  
1994 ◽  
Vol 14 (9) ◽  
pp. 6021-6029
Author(s):  
R Metz ◽  
A J Bannister ◽  
J A Sutherland ◽  
C Hagemeier ◽  
E C O'Rourke ◽  
...  

Transcriptional activation in eukaryotes involves protein-protein interactions between regulatory transcription factors and components of the basal transcription machinery. Here we show that c-Fos, but not a related protein, Fra-1, can bind the TATA-box-binding protein (TBP) both in vitro and in vivo and that c-Fos can also interact with the transcription factor IID complex. High-affinity binding to TBP requires c-Fos activation modules which cooperate to activate transcription. One of these activation modules contains a TBP-binding motif (TBM) which was identified through its homology to TBP-binding viral activators. This motif is required for transcriptional activation, as well as TBP binding. Domain swap experiments indicate that a domain containing the TBM can confer TBP binding on Fra-1 both in vitro and in vivo. In vivo activation experiments indicate that a GAL4-Fos fusion can activate a promoter bearing a GAL4 site linked to a TATA box but that this activity does not occur at high concentrations of GAL4-Fos. This inhibition (squelching) of c-Fos activity is relieved by the presence of excess TBP, indicating that TBP is a direct functional target of c-Fos. Removing the TBM from c-Fos severely abrogates activation of a promoter containing a TATA box but does not affect activation of a promoter driven only by an initiator element. Collectively, these results suggest that c-Fos is able to activate via two distinct mechanisms, only one of which requires contact with TBP. Since TBP binding is not exhibited by Fra-1, TBP-mediated activation may be one characteristic that discriminates the function of Fos-related proteins.


2001 ◽  
Vol 276 (15) ◽  
pp. 11883-11894 ◽  
Author(s):  
Joanne I. Adamkewicz ◽  
Karin E. Hansen ◽  
Wendy A. Prud'homme ◽  
Jennifer L. Davis ◽  
Jeremy Thorner

Yeast Mot1, an essential ATP-dependent regulator of basal transcription, removes TATA box-binding protein (TBP) from TATA sitesin vitro. Complexes of Mot1 and Spt15 (yeast TBP), radiolabeledin vitro, were immunoprecipitated with anti-TBP (or anti-Mot1) antibodies in the absence of DNA, showing Mot1 binds TBP in solution. Mot1 N-terminal deletions (residues 25–801) abolished TBP binding, whereas C-terminal ATPase domain deletions (residues 802–1867) did not. Complex formation was prevented above 200 mmsalt, consistent with electrostatic interaction. Correspondingly, TBP variants lacking solvent-exposed positive charge did not bind Mot1, whereas a mutant lacking positive charge within the DNA-binding groove bound Mot1. ATPase-defective mutant, Mot1(D1408N), which inhibits growth when overexpressed (but is suppressed by co-overexpression of TBP), bound TBP normallyin vitro, suggesting it forms nonrecyclable complexes. N-terminal deletions of Mot1(D1408N) were not growth-inhibitory. C-terminal deletions were toxic when overexpressed, and toxicity was ameliorated by TBP co-overproduction. Residues 1–800 of Mot1 are therefore necessary and sufficient for TBP binding. The N terminus of 89B, a tissue-specificDrosophilaMot1 homolog, bound the TBP-like factor, dTRF1. Native Mot1 and derivatives deleterious to growth localized in the nucleus, whereas nontoxic derivatives localized to the cytosol, suggesting TBP binding and nuclear transport of Mot1 are coupled.


Microbiology ◽  
2000 ◽  
Vol 81 (1) ◽  
pp. 37-46 ◽  
Author(s):  
Jong-Mook Kim ◽  
Youngtae Hong ◽  
Kuan-Teh Jeang ◽  
Sunyoung Kim

The IE2 protein of human cytomegalovirus transactivates viral and cellular promoters through a wide variety of cis-elements, but the mechanism of its action has not been well characterized. Here, IE2–Sp1 synergy and IE2–TATA box-binding protein (TBP) interaction are examined by artificial recruitment of either Sp1 or TBP to the promoter. It was found that IE2 could cooperate with DNA-bound Sp1. A 117 amino acid glutamine-rich fragment of Sp1, which can interact with Drosophila TAFII110 and human TAFII130, was sufficient for the augmentation of IE2-driven transactivation. In binding assays in vitro, IE2 interacted directly with the C-terminal region of Sp1, which contains the zinc finger DNA-binding domain, but not with its transactivation domain, suggesting that synergy between IE2 and the transactivation domain of Sp1 might be mediated by other proteins such as TAF or TBP. It was also found that TBP recruitment to the promoter markedly increased IE2-mediated transactivation. Thus, IE2 acts synergistically with DNA-bound Sp1 and DNA-bound TBP. These results suggest that, in human cytomegalovirus IE2 transactivation, Sp1 functions at an early step such as recruitment of TBP and IE2 acts to accelerate rate-limiting steps after TBP recruitment.


1996 ◽  
Vol 16 (11) ◽  
pp. 6398-6407 ◽  
Author(s):  
J Klug ◽  
M Beato

The gene for rabbit uteroglobin codes for a small calcium-, steroid-, and biphenyl metabolite-binding homodimeric protein which is expressed in a variety of epithelial cell types such as Clara cells (lung) and the glandular and luminal cells of the endometrium. One important region mediating its efficient transcription in a human endometrium-derived cell line, Ishikawa, is centered around a noncanonical TATA box. Two factors, TATA core factor (TCF), expressed in cell lines derived from uteroglobin-expressing tissues, and the ubiquitously expressed TATA palindrome factor, bind to the DNA major groove at two adjacent sites within this region. Here, we report the identification of the TATA palindrome factor as the transcription/initiation factor YY1 by microsequencing of the biochemically purified factor from HeLa cells. The binding site for YY1 within the uteroglobin gene is unique in its sequence and its location overlapping a weak TATA box (TACA). Binding of YY1 was required for efficient transcription in TCF-positive Ishikawa cells, which responded only weakly to a change of TACA to TATA, although in vitro binding affinity for the TATA-box-binding protein increased by 1 order of magnitude. In contrast, in CV-1 cells, lacking TCF, binding of YY1 was not required for transcription in the context of a wild-type TACA box, whereas a change from TACA to TATA led to significantly increased reporter gene expression. DNA binding data exclude a role of YY1 in stabilizing the interaction of the TATA-box-binding protein with the uteroglobin promoter. We conclude that cell lines derived from uteroglobin-expressing tissues overcome the weak TATA box with the help of auxiliary factors, one of them being YY1.


2018 ◽  
Vol 118 (2) ◽  
pp. 517-538 ◽  
Author(s):  
Bartolo Avendaño-Borromeo ◽  
Ravi Kumar Narayanasamy ◽  
Guillermina García-Rivera ◽  
María Luisa Labra-Barrios ◽  
Anel E. Lagunes-Guillén ◽  
...  

2013 ◽  
Vol 288 (38) ◽  
pp. 27564-27570 ◽  
Author(s):  
Neha Verma ◽  
Ko-Hsuan Hung ◽  
Jin Joo Kang ◽  
Nermeen H. Barakat ◽  
William E. Stumph

In the fruit fly Drosophila melanogaster, RNA polymerase III transcription was found to be dependent not upon the canonical TATA box-binding protein (TBP) but instead upon the TBP-related factor 1 (TRF1) (Takada, S., Lis, J. T., Zhou, S., and Tjian, R. (2000) Cell 101, 459–469). Here we confirm that transcription of fly tRNA genes requires TRF1. However, we unexpectedly find that U6 snRNA gene promoters are occupied primarily by TBP in cells and that knockdown of TBP, but not TRF1, inhibits U6 transcription in cells. Moreover, U6 transcription in vitro effectively utilizes TBP, whereas TBP cannot substitute for TRF1 to promote tRNA transcription in vitro. Thus, in fruit flies, different classes of RNA polymerase III promoters differentially utilize TBP and TRF1 for the initiation of transcription.


Microbiology ◽  
1999 ◽  
Vol 145 (1) ◽  
pp. 33-40 ◽  
Author(s):  
Juan P. Luna-Arias ◽  
Rosaura Hernandez-Rivas ◽  
Guadalupe de Dios-Bravo ◽  
Job Garcia ◽  
Leobardo Mendoza ◽  
...  

Gene ◽  
2012 ◽  
Vol 511 (2) ◽  
pp. 177-186 ◽  
Author(s):  
Kazuhiro E. Fujimori ◽  
Kumiko Hazama ◽  
Takashi Kawasaki ◽  
Tomonori Deguchi ◽  
Syunsuke Yuba

Sign in / Sign up

Export Citation Format

Share Document