Long-day effects on growth and flower initiation of tomato plants in low light

1973 ◽  
Vol 73 (2) ◽  
pp. 221-228 ◽  
Author(s):  
R. G. HURD
HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 542c-542
Author(s):  
Donglin Zhang ◽  
Allan M. Armitage ◽  
James M. Affolter ◽  
Michael A. Dirr

Lysimachia congestiflora Wils. (Primulaceae) is a new crop for American nurseries and may be used as an annual in the north and a half-hardy perennial in the south. The purpose of this study was to investigate the influence of photoperiod, temperature, and irradiance on its flowering and growth. Three experiments were conducted with photoperiod of 8, 12, 16 hrs day-1, temperature of 10, 18, 26C, and irradiance of 100, 200, 300 μmol m-2s-1, respectively. Plant.9 given long day photoperiod (16 hours) flowered 21 and 34 days earlier, respectively, than plants at 12 sad 8 hour photoperiods. Plants under long day treatment produced more flowers than those at 8 and 12 hours. Plant dry weight did not differ between treatments, but plants grown in the long day treatment produced fewer but larger leaves. Total plant growth increased as temperature increased, but lower temperature (10C) decreased flower initiation and prevented flower development, while high temperature (26C) reduced the longevity of the open flowers. Flowering was accelerated and dry weight increased as plants were subjected to high irradiance levels. The results suggest that Lysimachia congestiflora is a quantitative long day plant. It should be grown under a photoperiod of at least 12 hours at a temperature of approximately 20C. Low light areas should be avoided and supplemental lighting to provide the long days may improve the plant quality.


HortScience ◽  
1995 ◽  
Vol 30 (2) ◽  
pp. 255-256 ◽  
Author(s):  
Allan M. Armitage

Hamelia patens Jacq. (Texas firebush) is a long-day plant for flower initiation and flower development; however, flower development is more sensitive to photoperiod than is flower initiation. The critical photoperiod for flower development at 25C is between 12 and 16 hours. Flowering was delayed under low light conditions, and plant dry weight was heavier and flowering time was earlier for plants grown at a constant 25 or 30C than at 20C. A greenhouse environment with a 16-hour photoperiod and moderately high temperature (25C) would be appropriate for production of H. patens.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 509a-509
Author(s):  
C.E. Wieland ◽  
J.E. Barrett ◽  
D.G. Clark ◽  
G. J. Wilfret

Four poinsettia cultivars were grown in glass greenhouses in Gainesville, Fla., in the Fall 1997 to evaluate differences in floral initiation and subsequent development. Three means of regulating photoperiod were 1) natural days 2) long-day lighting to 6 Oct. and then natural days (lights out) 3) long-day lighting to 6 Oct., and then short-day conditions by black cloth for 15 h (black cloth). At 2-day intervals, sample meristems were collected and examined for initiation of reproductive development. Average minimum and maximum temperatures during the first two weeks of October were 22 and 29 °C, respectively, with an average temperature of 25.3 °C. The overall average temperature was 23.2 °C from planting to anthesis. Differences in anthesis dates among cultivars were primarily due to time to initiation vs. rate of development. Under natural days, `Lilo' initiated first on 8 Oct. and `Freedom', `Peterstar', and `Success', followed by 6, 8, and 18 days, respectively. Lights out resulted in `Lilo' initiating 17 Oct., followed by `Freedom', `Peterstar', and `Success' initiating 7, 12, and 15 days later, respectively. Differences between cultivars in time of initiation was reduced under black cloth, where `Lilo' initiated 14 Oct., followed by `Freedom' 2 days later, and `Peterstar' and `Success' 7 days afterward. Initiation was positively correlated to visible bud and anthesis. First color was positively correlated to initiation and visible bud, with the exception of `Lilo'. Growth room studies conducted using various high temperatures and photoperiods indicated similar trends.


2003 ◽  
Vol 128 (4) ◽  
pp. 479-485 ◽  
Author(s):  
Erik S. Runkle ◽  
Royal D. Heins

Plastics that selectively reduce the transmission of far-red light (FR, 700 to 800 nm) reduce extension growth of many floricultural crops. However, FR-deficient (FRd) environments delay flowering in some long-day plants (LDPs), including `Crystal Bowl Yellow' pansy (Viola ×wittrockiana Gams). Our objective was to determine if FR light could be added to an otherwise FRd environment to facilitate flowering with minimal extension growth. In one experiment, plants were grown under a 16-hour FRd photoperiod, and FR-rich light was added during portions of the day or night. For comparison, plants were also grown with a 9-hour photoperiod [short-day (SD) control] or under a neutral (N) filter with a 16-hour photoperiod (long day control). Flowering was promoted most (i.e., percent of plants that flowered increased and time to flower decreased) when FR-rich light was added during the entire 16-hour photoperiod, during the last 4 hours of the photoperiod, or during the first or second 4 hours after the end of the photoperiod. In a separate experiment, pansy was grown under an FRd or N filter with a 9-hour photoperiod plus 0, 0.5, 1, 2, or 4 hours of night interruption (NI) lighting that delivered a red (R, 600 to 700 nm) to FR ratio of 0.56 (low), 1.28 (moderate), or 7.29 (high). Under the N filter, the minimum NI duration that increased percent flowering was 2 hours with a moderate or low R:FR and 4 hours with a high R:FR. Under the FRd filter, 2 or 4 hours of NI lighting with a moderate or low R:FR, respectively, was required to increase percent flowering, but a 4-hour NI with a high R:FR failed to promote flowering. Pansy appears to be day-neutral with respect to flower initiation and a quantitative LDP with respect to flower development. The promotion of reproductive development was related linearly to the promotion of extension growth. Therefore, it appears that in LDPs such as pansy, light duration and quality concomitantly promote extension growth and flowering, and cannot readily be separated with lighting strategies.


Nature ◽  
1961 ◽  
Vol 190 (4781) ◽  
pp. 1130-1131 ◽  
Author(s):  
RODERICK G. THOMAS

2001 ◽  
Vol 126 (3) ◽  
pp. 275-282 ◽  
Author(s):  
Erik S. Runkle ◽  
Royal D. Heins

For many long-day plants (LDP), adding far red light (FR, 700 to 800 nm) to red light (R, 600 to 700 nm) to extend the day or interrupt the night promotes extension growth and flowering. Blue light (B, 400 to 500 nm) independently inhibits extension growth, but its effect on flowering is not well described. Here, we determined how R-, FR-, or B-deficient (Rd, FRd, or Bd, respectively) photoperiods influenced stem extension and flowering in five LDP species: Campanula carpatica Jacq., Coreopsi ×grandiflora Hogg ex Sweet, Lobelia ×speciosa Sweet, Pisum sativum L., and Viola ×wittrockiana Gams. Plants were exposed to Rd, FRd, Bd, or normal (control) 16-hour photoperiods, each of which had a similar photosynthetic (400 to 700 nm) photon flux. Compared with that of the control, the Rd environment promoted extension growth in C. carpatica (by 65%), C. ×grandiflora (by 26%), P. sativum (by 23%), and V. ×wittrockiana (by 31%). The FRd environment suppressed extension growth in C. ×grandiflora (by 21%), P. sativum (by 17%), and V. ×wittrockiana (by 14%). Independent of the R: FR ratio, the Bd environment promoted stem extension (by 10% to 100%) in all species, but there was little or no effect on flowering percentage and time to flower. Extension growth was generally linearly related to the incident wide band (100 nm) R: FR ratio or estimated phytochrome photoequilibrium except when B light was specifically reduced. A high R: FR ratio (i.e., under the FRd filter) delayed flower initiation (but not development) in C. carpatica and C.×grandiflora and inhibited flower development (but not initiation) in V.×wittrockiana. Therefore, B light and the R: FR ratio independently regulate extension growth by varying magnitudes in LDP, and in some species, an FRd environment can suppress flower initiation or development.


Sign in / Sign up

Export Citation Format

Share Document