Levels of Cyclic AMP and Electrical Events during Inhibition of Contractile Activity in Vascular Smooth Muscle

1975 ◽  
Vol 94 (2) ◽  
pp. 154-166 ◽  
Author(s):  
Bengt Ljung ◽  
Olle Isaksson ◽  
Börje Johansson
Author(s):  
Olena M. Semenykhina ◽  
Olga V. Bazilyuk ◽  
Yulia P. Korkach ◽  
Vadim F. Sagach

2019 ◽  
Vol 141 (3) ◽  
Author(s):  
Alexander W. Caulk ◽  
Jay D. Humphrey ◽  
Sae-Il Murtada

Vascular smooth muscle cells (VSMCs) can regulate arterial mechanics via contractile activity in response to changing mechanical and chemical signals. Contractility is traditionally evaluated via uniaxial isometric testing of isolated rings despite the in vivo environment being very different. Most blood vessels maintain a locally preferred value of in vivo axial stretch while subjected to changes in distending pressure, but both of these phenomena are obscured in uniaxial isometric testing. Few studies have rigorously analyzed the role of in vivo loading conditions in smooth muscle function. Thus, we evaluated effects of uniaxial versus biaxial deformations on smooth muscle contractility by stimulating two regions of the mouse aorta with different vasoconstrictors using one of three testing protocols: (i) uniaxial isometric testing, (ii) biaxial isometric testing, and (iii) axially isometric plus isobaric testing. Comparison of methods (i) and (ii) revealed increased sensitivity and contractile capacity to potassium chloride and phenylephrine (PE) with biaxial isometric testing, and comparison of methods (ii) and (iii) revealed a further increase in contractile capacity with isometric plus isobaric testing. Importantly, regional differences in estimated in vivo axial stretch suggest locally distinct optimal biaxial configurations for achieving maximal smooth muscle contraction, which can only be revealed with biaxial testing. Such differences highlight the importance of considering in vivo loading and geometric configurations when evaluating smooth muscle function. Given the physiologic relevance of axial extension and luminal pressurization, we submit that, when possible, axially isometric plus isobaric testing should be employed to evaluate vascular smooth muscle contractile function.


1990 ◽  
Vol 267 (3) ◽  
pp. 607-614 ◽  
Author(s):  
A Middleton ◽  
B Middleton

Receptor-mediated binding and metabolism of low-density lipoproteins (LDL) in cultured human vascular smooth-muscle cells and skin fibroblasts are altered by increased cellular cyclic AMP concentrations. However, the LDL receptor does not respond to changes in cyclic AMP concentration in a simple manner. The activation of adenylate cyclase with forskolin, or the addition of membrane-permeant cyclic AMP analogues, initially decreases the expression of the LDL receptor, but is followed by a substantial increase in receptor expression after 24 h. This increase does not occur in the presence of inhibitors of RNA or protein synthesis, and is due to doubling of the Bmax. of the LDL receptor, without alteration of its affinity for LDL. By contrast, elevation of cyclic AMP concentration by inhibition of phosphodiesterases results in decreased receptor expression throughout the 24 h period. These two response patterns are reproducible phenomena, consistently observed in low-passaged cells derived from seven unrelated individuals.


Sign in / Sign up

Export Citation Format

Share Document