THE INFLUENCE OF THYROXINE AND RELATED COMPOUNDS ON OXIDATIVE RATE AND EFFICIENCY OF PHOSPHORYLATION IN LIVER MITOCHONDRIA AND SUBMITOCHONDRIAL PARTICLES*

2006 ◽  
Vol 86 (2) ◽  
pp. 494-505 ◽  
Author(s):  
J. Ramsey Bronk
2008 ◽  
Vol 294 (6) ◽  
pp. R1947-R1957 ◽  
Author(s):  
T. M. Rodela ◽  
J. S. Ballantyne ◽  
P. A. Wright

In osmoregulating teleost fish, urea is a minor nitrogen excretory product, whereas in osmoconforming marine elasmobranchs it serves as the major tissue organic solute and is retained at relatively high concentrations (∼400 mmol/l). We tested the hypothesis that urea transport across liver mitochondria is carrier mediated in both teleost and elasmobranch fishes. Intact liver mitochondria in rainbow trout ( Oncorhynchus mykiss) demonstrated two components of urea uptake, a linear component at high concentrations and a phloretin-sensitive saturable component [Michaelis constant ( Km) = 0.58 mmol/l; maximal velocity ( Vmax) = 0.12 μmol·h−1·mg protein−1] at lower urea concentrations (<5 mmol/l). Similarly, analysis of urea uptake in mitochondria from the little skate ( Raja erinacea) revealed a phloretin-sensitive saturable transport ( Km= 0.34 mmol/l; Vmax= 0.054 μmol·h−1·mg protein−1) at low urea concentrations (<5 mmol/l). Surprisingly, urea transport in skate, but not trout, was sensitive to a variety of classic ionophores and respiration inhibitors, suggesting cation sensitivity. Hence, urea transport was measured in the reverse direction using submitochondrial particles in skate. Transport kinetics, inhibitor response, and pH sensitivity were very similar in skate submitochondrial particle submitochondrial particles ( Km= 0.65 mmol/l, Vmax= 0.058 μmol·h−1·mg protein−1) relative to intact mitochondria. We conclude that urea influx and efflux in skate mitochondria is dependent, in part, on a bidirectional proton-sensitive mechanism similar to bacterial urea transporters and reminiscent of their ancestral origins. Rapid equilibration of urea across the mitochondrial membrane may be vital for cell osmoregulation (elasmobranch) or nitrogen waste excretion (teleost).


1997 ◽  
Vol 52 (11-12) ◽  
pp. 799-806 ◽  
Author(s):  
Celene F. Bernardes ◽  
Jose R. Meyer-Fernandes ◽  
Orlando B. Martins ◽  
Anibal E. Vercesi

Abstract This study shows that incubation of rat liver mitochondria in the presence of the thiol/ amino reagent 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DID S) is followed by inhibition of both succinate supported respiration and oxidative phosphorylation. Half-maximal inhibition of succinic dehydrogenase activity and succinate oxidation by mitochondria was attained at 55.3 and 60.8 μm DIDS, respectively. DIDS did inhibit the net ATP synthesis and ATP ⇔ [32P]Pi exchange reaction catalyzed by submitochondrial particles in a dose-dependent manner (Ki= 31.7 μm and Ki = 32.7 μm), respectively. The hydrolytic activities of uncoupled heart submitochondrial particles and purified F 1 -ATPase were also inhibited 50% by 31.9 and 20.9 μm DIDS, respectively.


1977 ◽  
Vol 164 (3) ◽  
pp. 699-704 ◽  
Author(s):  
D E Griffiths ◽  
K Cain ◽  
R L Hyams

1. DL-8-Methyldihydrolipoate was shown to be a potent inhibitor of mitochondrial oxidative phosphorylation and ATP-driven energy-linked reactions. 2. ADP-stimulated respiration utilizing pyruvate + malate and succinate in both ox heart and rat liver mitochondria is inhibited; oxidative phosphorylation using pyruvate + malate, succinate and ascorbate + NNN'N'-tetramethyl-p-phenylenediamine as substrates is also inhibited; uncoupler-stimulated respiration is unaffected regardless of the substrate used. 3. Mitochondrial oligomycin-sensitive adenosine triphosphatase is inhibited in both the membrane-bound form and the purified detergent-dispersed preparation. 4. ATP-driven transhydrogenase and the ATP-driven energy-linked reduction of NAD+ by succinate in ox heart submitochondrial particles are inhibited, whereas the respiratory-chain-driven transhydrogenase is unaffected. 5. DL-8-Methyl-lipoate has no immediate effect on the above reactions, demonstrating the requirement for the reduced form for inhibition. 6. The inhibitory properties of DL-8-methyldihydrolipoate are analogous to those of oligomycin and provide further evidence of a role for lipoic acid in oxidative phosphorylation.


1993 ◽  
Vol 290 (1) ◽  
pp. 139-144 ◽  
Author(s):  
C E Cooper ◽  
M Markus ◽  
S P Seetulsingh ◽  
J M Wrigglesworth

1. Psychosine (beta-galactosylsphingosine) is the toxic agent in Krabbe's disease (globoid cells leukodystrophy). It inhibits purified bovine heart mitochondrial cytochrome c oxidase; there is a rapid phase of inhibition (complete within 10-15 s) and a slower phase (complete within 10-15 min). Both phases are also seen in rat liver mitochondria. IC50 is about 200 microM psychosine in the purified enzyme and less than 20 microM in mitochondria. Psychosine inhibition is due to binding to cytochrome oxidase, not cytochrome c. 2. Bovine heart submitochondrial particles show inhibition similar to rat liver mitochondria. However, although proteoliposomes containing bovine heart cytochrome oxidase show an identical fast phase, they have no noticeable slow phase of inhibition. Addition of phospholipid liposomes to submitochondrial particles relieved the majority of psychosine inhibition, consistent with the removal of those molecules binding in the slow phase. Psychosine can inhibit cytochrome oxidase molecules facing in either direction in proteoliposomes and submitochondrial particles, suggesting that it can rapidly interact with both sides of a membrane when added externally. 3. At high ionic strength, the presence of psychosine decreases the Vmax. of cytochrome oxidase with little effect on the Km for cytochrome c. This non-competitive inhibition suggests that the psychosine-enzyme complex is kinetically inactive and not labile over the time course of the assay. Psychosine does not inhibit the reduction of haem a or haem a3 by artificial electron donors, but does inhibit the reduction of haem a by cytochrome c.


Sign in / Sign up

Export Citation Format

Share Document