Androgen Receptors in Dermal Papilla Cells of Scalp Hair Follicles in Male Pattern Baldness

2006 ◽  
Vol 642 (1) ◽  
pp. 448-451 ◽  
Author(s):  
M. B. HODGINS ◽  
R. CHOUDHRY ◽  
G. PARKER ◽  
R. F. OLIVER ◽  
C. A. B. JAHODA ◽  
...  
1998 ◽  
Vol 156 (1) ◽  
pp. 59-65 ◽  
Author(s):  
NA Hibberts ◽  
AE Howell ◽  
VA Randall

Androgens can gradually transform large scalp hair follicles to smaller vellus ones, causing balding. The mechanisms involved are unclear, although androgens are believed to act on the epithelial hair follicle via the mesenchyme-derived dermal papilla. This study investigates whether the levels and type of androgen receptors in primary lines of cultured dermal papilla cells derived from balding scalp hair follicles differ from those of follicles from non-balding scalp. Androgen receptor content was measured by saturation analysis using the non-metabolisable androgen, [3H]mibolerone (0.05-10 nM) in a 9-10 point assay. Pubic dermal fibroblasts and Shionogi cells were examined as positive controls. Repetitive assays of Shionogi cells showed good precision in the levels of androgen receptor content (coefficient of variation = 3.7%). Specific, high affinity, low capacity androgen receptors were detected in dermal papilla cells from both balding and non-balding follicles. Balding cells contained significantly (P < 0.01) greater levels of androgen receptors (Bmax = 0.06 +/- 0.01 fmol/10(4) cells (mean +/- S.E.M.)) than those from non-balding scalp (0.04 +/- 0.001). Competition studies with a range of steroids showed no differences in receptor binding specificity in the two cell types. The higher levels of androgen receptors in cells from balding scalp hair follicles with similar properties to those from non-balding scalp concur with the expectations from their in vivo responses to androgens. This supports the hypothesis that androgens act via the dermal papilla and suggests that cultured dermal papilla cells may offer a model system for studying androgen action in androgenetic alopecia.


2006 ◽  
Vol 642 (1) ◽  
pp. 452-453 ◽  
Author(s):  
M. J. THORNTON ◽  
K. HAMADA ◽  
I. LAING ◽  
A. G. MESSENGER ◽  
V. A. RANDALL

1991 ◽  
Vol 97 (2) ◽  
pp. 345-348 ◽  
Author(s):  
M Julie Thornton ◽  
Andrew G Messenger ◽  
Katherine Elliott ◽  
Valerie A Randall

1992 ◽  
Vol 133 (1) ◽  
pp. 141-147 ◽  
Author(s):  
V. A. Randall ◽  
M. J. Thornton ◽  
A. G. Messenger

ABSTRACT Androgens stimulate hair growth in many areas, e.g. the beard; they also induce regression and balding on the scalp with increasing age in genetically disposed individuals. The cause(s) of this biological conundrum is unknown but age-related; androgen-potentiated changes also occur in the prostate. The mesenchymederived dermal papilla situated at the base of the hair follicle is thought to play an important role in regulating the growth and development of the follicular epithelium. Since androgens probably act on the hair follicle via the dermal papilla, cultures of dermal papilla cells from human hair follicles with differing responses to androgens in vivo have been established and their ability to bind androgens assessed. Receptor binding was assayed by saturation analysis (0·05–10 nmol/l) using the synthetic non-metabolizable androgen, [3H]mibolerone. Shionogi 115 cells were also assayed as a positive control. Specific high-affinity low-capacity androgen receptors were identified in 12 dermal papilla primary cell lines with similar characteristics to established androgen receptors. Cells from androgen-sensitive follicles (beard, scrotum and pubis) contained higher levels of androgen receptors than those derived from relatively androgeninsensitive non-balding scalp follicles whether the receptor content was calculated in relation to cell number, protein or DNA content of the cells. These results support the hypothesis that androgens act on hair follicles via the dermal papilla in vivo and demonstrate that dermal papilla cells exhibit an altered phenotype in culture which depends on the body site from which they were derived. Cultured human dermal papilla cells should prove a useful model system for studies of the mechanism of androgen action, and further investigations may elucidate the paradox of why bald men can grow beards. Journal of Endocrinology (1992) 133, 141–147


1993 ◽  
Vol 101 (s1) ◽  
pp. 114S-120S ◽  
Author(s):  
Valerie Anne Randall ◽  
Margaret Julie Thornton ◽  
Andrew Guy Messenger ◽  
Nigel Andrew Hibberts ◽  
Andrew Stewart Irving Loudon ◽  
...  

1991 ◽  
Vol 99 (3) ◽  
pp. 627-636 ◽  
Author(s):  
C.A. Jahoda ◽  
A.J. Reynolds ◽  
C. Chaponnier ◽  
J.C. Forester ◽  
G. Gabbiani

We have examined the expression of smooth muscle alpha-actin in hair follicles in situ, and in hair follicle dermal cells in culture by means of immunohistochemistry. Smooth muscle alpha-actin was present in the dermal sheath component of rat vibrissa, rat pelage and human follicles. Dermal papilla cells within all types of follicles did not express the antigen. However, in culture a large percentage of both hair dermal papilla and dermal sheath cells were stained by this antibody. The same cells were negative when tested with an antibody to desmin. Overall, explant-derived skin fibroblasts had relatively low numbers of positively marked cells, but those from skin regions of high hair-follicle density displayed more smooth muscle alpha-actin expression than fibroblasts from areas with fewer follicles. 2-D SDS-PAGE confirmed that, unlike fibroblasts, cultured papilla cells contained significant quantities of the alpha-actin isoform. The rapid switching on of smooth muscle alpha-actin expression by dermal papilla cells in early culture, contrasts with the behaviour of smooth muscle cells in vitro, and has implications for control of expression of the antigen in normal adult systems. The very high percentage of positively marked cultured papilla and sheath cells also provides a novel marker of cells from follicle dermis, and reinforces the idea that they represent a specialized cell population, contributing to the heterogeneity of fibroblast cell types in the skin dermis, and possibly acting as a source of myofibroblasts during wound healing.


2020 ◽  
Vol 21 (16) ◽  
pp. 5672
Author(s):  
Kyung-Eun Ku ◽  
Nahyun Choi ◽  
Jong-Hyuk Sung

Rab27a/b are known to play an important role in the transport of melanosomes, with their knockout causing silvery gray hair. However, the relationship between Rab27a/b and hair growth is not well known. To evaluate the role of Rab27a/b in hair cycle, we investigated the expression of Rab27a/b during hair cycling and human outer root sheath (hORS) cells. The expression of Rab27a in ORS cells was mainly detected at the anagen, whereas expression of Rab27b in ORS, and epidermal cells was strongly expressed at the telogen. Additionally, Rab27a/b were expressed in the Golgi of hORS cells. To evaluate the role of Rab27a/b in hair growth, telogen-to-anagen transition animal and vibrissae hair follicles (HFs) organ culture models were assayed using Rab27a/b siRNAs. The knockdown of Rab27a or Rab27b suppressed or promoted hair growth, respectively. These results were also confirmed in human dermal papilla cells (hDPCs) and hORS cells, showing the opposite mitogenic effects. Moreover, Rab27b knockdown increased the expression levels of various growth factors in the hDPCs and hORS cells. Overall, the opposite temporal expression patterns during hair cycling and roles for hair growth of Rab27a/b suggested that Rab27a/b might regulate the hair cycle. Therefore, our study may provide a novel solution for the development of hair loss treatment by regulating Rab27a/b levels.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Eun Young Lee ◽  
You Jin Nam ◽  
Sangjin Kang ◽  
Eun Ju Choi ◽  
Inbo Han ◽  
...  

Abstract Background Stress is an important cause of skin disease, including hair loss. The hormonal response to stress is due to the HPA axis, which comprises hormones such as corticotropin releasing factor (CRF), adrenocorticotropic hormone (ACTH), and cortisol. Many reports have shown that CRF, a crucial stress hormone, inhibits hair growth and induces hair loss. However, the underlying mechanisms are still unclear. The aim of this study was to examine the effect of CRF on human dermal papilla cells (DPCs) as well as hair follicles and to investigate whether the HPA axis was established in cultured human DPCs. Results CRF inhibited hair shaft elongation and induced early catagen transition in human hair follicles. Hair follicle cells, both human DPCs and human ORSCs, expressed CRF and its receptors and responded to CRF. CRF inhibited the proliferation of human DPCs through cell cycle arrest at G2/M phase and induced the accumulation of reactive oxygen species (ROS). Anagen-related cytokine levels were downregulated in CRF-treated human DPCs. Interestingly, increases in proopiomelanocortin (POMC), ACTH, and cortisol were induced by CRF in human DPCs, and antagonists for the CRF receptor blocked the effects of this hormone. Conclusion The results of this study showed that stress can cause hair loss by acting through stress hormones. Additionally, these results suggested that a fully functional HPA axis exists in human DPCs and that CRF directly affects human DPCs as well as human hair follicles under stress conditions.


Sign in / Sign up

Export Citation Format

Share Document