A Mutant of Basic Fibroblast Growth Factor that Has Lost the Ability to Stimulate Plasminogen Activator Synthesis in Endothelial Cells

1991 ◽  
Vol 638 (1 The Fibroblas) ◽  
pp. 369-377
Author(s):  
A. ISACCHI ◽  
L. BERGONZONI ◽  
M. STATUTO ◽  
M. RUSNATI ◽  
R. CHIESA ◽  
...  
1988 ◽  
Vol 107 (3) ◽  
pp. 1199-1205 ◽  
Author(s):  
Y Sato ◽  
D B Rifkin

We have found that the spontaneous migration of bovine aortic endothelial cells from the edge of a denuded area in a confluent monolayer is dependent upon the release of endogenous basic fibroblast growth factor (bFGF). Cell movement is blocked by purified polyclonal rabbit IgG to bFGF as well as affinity purified anti-bFGF IgG and anti-bFGF F(ab')2 fragments. The inhibitory effect of the immunoglobulins is dependent upon antibody concentration, is reversible, is overcome by the addition of recombinant bFGF, and is removed by affinity chromatography of the antiserum through a column of bFGF-Sepharose. Cell movement is also reversibly inhibited by the addition of protamine sulfate and suramin; two agents reported to block bFGF binding to its receptor. The addition of recombinant bFGF to wounded monolayers accelerates the movement of cells into the denuded area. Transforming growth factor beta which has been shown to antagonize several other effects of bFGF also inhibits cell movement. The anti-bFGF IgG prevents the movement of bovine capillary endothelial cells, BHK-21, NIH 3T3, and human skin fibroblasts into a denuded area. Antibodies to bFGF, as well as suramin and protamine sulfate also suppress the basal levels of plasminogen activator and DNA synthesis in bovine aortic endothelial cells.


1986 ◽  
Vol 6 (11) ◽  
pp. 4060-4066 ◽  
Author(s):  
M Presta ◽  
D Moscatelli ◽  
J Joseph-Silverstein ◽  
D B Rifkin

A 17,500-dalton protein which stimulates plasminogen activator production in cultured bovine capillary endothelial cells has been purified from a SK-Hep-1 human hepatoma cell lysate by using heparin affinity chromatography and fast protein-liquid ion exchange chromatography. The purified molecule stimulated plasminogen activator production in a dose-dependent manner between 0.01 and 1 ng/ml. It also stimulated collagenase synthesis, DNA synthesis, and motility in capillary endothelial cells in the same concentration range. This molecule was identified as a basic fibroblast growth factor-like molecule on the basis of its biological activity, its affinity for heparin-Sepharose, and its cross-reactivity with a polyclonal antibody raised against the human placental basic fibroblast growth factor.


2001 ◽  
Vol 86 (7) ◽  
pp. 3359-3367 ◽  
Author(s):  
Pieter Koolwijk ◽  
Kitty Kapiteijn ◽  
Bibi Molenaar ◽  
Erik van Spronsen ◽  
Bea van der Vecht ◽  
...  

The endometrium is a tissue unique for its cyclic destruction and rapid regeneration of blood vessels. Angiogenesis, indispensable for the regeneration process, provides a richly vascularized, receptive endometrium fundamental for implantation, placentation, and embryogenesis. Human endometrial microvascular endothelial cells (hEMVEC) were isolated to better understand the properties and angiogenic behavior of these cells. Unlike human foreskin microvascular endothelial cells (hFMVEC), which proliferated better upon stimulation by basic fibroblast growth factor, hEMVEC were much more sensitive to vascular endothelial growth factor A (VEGF-A) stimulation, probably due to enhanced VEGF receptor 2 expression. In addition, hEMVEC displayed an enhanced expression of the urokinase-type plasminogen activator (u-PA) compared with hFMVEC. No differences were found in tissue-type PA, PA inhibitor-1, and u-PA receptor expression. The high expression of u-PA by hEMVEC was also found in tissue sections. hEMVEC formed capillary-like structures when cultured in 20% human serum on top of three-dimensional fibrin matrices, and VEGF-A or basic fibroblast growth factor increased this tube formation. This is in contrast with hFMVEC, which formed tubes only after simultaneous stimulation by a growth factor and tumor necrosis factor-α. The high basal level of u-PA contributes to and may explain the higher angiogenic properties of hEMVEC (in vitro).


1986 ◽  
Vol 6 (11) ◽  
pp. 4060-4066
Author(s):  
M Presta ◽  
D Moscatelli ◽  
J Joseph-Silverstein ◽  
D B Rifkin

A 17,500-dalton protein which stimulates plasminogen activator production in cultured bovine capillary endothelial cells has been purified from a SK-Hep-1 human hepatoma cell lysate by using heparin affinity chromatography and fast protein-liquid ion exchange chromatography. The purified molecule stimulated plasminogen activator production in a dose-dependent manner between 0.01 and 1 ng/ml. It also stimulated collagenase synthesis, DNA synthesis, and motility in capillary endothelial cells in the same concentration range. This molecule was identified as a basic fibroblast growth factor-like molecule on the basis of its biological activity, its affinity for heparin-Sepharose, and its cross-reactivity with a polyclonal antibody raised against the human placental basic fibroblast growth factor.


1999 ◽  
Vol 10 (9) ◽  
pp. 2933-2943 ◽  
Author(s):  
Susanne Schenk ◽  
Ruth Chiquet-Ehrismann ◽  
Edouard J. Battegay

To investigate the potential role of tenascin-C (TN-C) on endothelial sprouting we used bovine aortic endothelial cells (BAECs) as an in vitro model of angiogenesis. We found that TN-C is specifically expressed by sprouting and cord-forming BAECs but not by nonsprouting BAECs. To test whether TN-C alone or in combination with basic fibroblast growth factor (bFGF) can enhance endothelial sprouting or cord formation, we used BAECs that normally do not sprout and, fittingly, do not express TN-C. In the presence of bFGF, exogenous TN-C but not fibronectin induced an elongated phenotype in nonsprouting BAECs. This phenotype was due to altered actin cytoskeleton organization. The fibrinogen globe of the TN-C molecule was the active domain promoting the elongated phenotype in response to bFGF. Furthermore, we found that the fibrinogen globe was responsible for reduced cell adhesion of BAECs on TN-C substrates. We conclude that bFGF-stimulated endothelial cells can be switched to a sprouting phenotype by the decreased adhesive strength of TN-C, mediated by the fibrinogen globe.


Sign in / Sign up

Export Citation Format

Share Document