The Impact of ex Vivo Cytokine Stimulation on Engraftment of Primitive Hematopoietic Cells in a Non-Human Primate Model

2006 ◽  
Vol 938 (1) ◽  
pp. 236-245 ◽  
Author(s):  
CYNTHIA E. DUNBAR ◽  
MASAAKI TAKATOKU ◽  
ROBERT E. DONAHUE
Vaccines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 584
Author(s):  
Natalia Nunez ◽  
Louis Réot ◽  
Elisabeth Menu

Interactions between the immune system and the microbiome play a crucial role on the human health. These interactions start in the prenatal period and are critical for the maturation of the immune system in newborns and infants. Several factors influence the composition of the infant’s microbiota and subsequently the development of the immune system. They include maternal infection, antibiotic treatment, environmental exposure, mode of delivery, breastfeeding, and food introduction. In this review, we focus on the ontogeny of the immune system and its association to microbial colonization from conception to food diversification. In this context, we give an overview of the mother–fetus interactions during pregnancy, the impact of the time of birth and the mode of delivery, the neonate gastrointestinal colonization and the role of breastfeeding, weaning, and food diversification. We further review the impact of the vaccination on the infant’s microbiota and the reciprocal case. Finally, we discuss several potential therapeutic interventions that might help to improve the newborn and infant’s health and their responses to vaccination. Throughout the review, we underline the main scientific questions that are left to be answered and how the non-human primate model could help enlighten the path.


2022 ◽  
Vol 226 (1) ◽  
pp. S150
Author(s):  
Rahul J. D'Mello ◽  
Victoria H. Roberts ◽  
Xiaojie Wang ◽  
Juanito D. Terrobias ◽  
Jamie O. Lo

2021 ◽  
Author(s):  
C. M. Crooks ◽  
A. M. Weiler ◽  
S. L. Rybarczyk ◽  
M. I. Bliss ◽  
A. S. Jaeger ◽  
...  

ABSTRACTConcerns have arisen that pre-existing immunity to dengue virus (DENV) could enhance Zika virus (ZIKV) disease, due to the homology between ZIKV and DENV and the observation of antibody-dependent enhancement (ADE) among DENV serotypes. To date, no study has examined the impact of pre-existing DENV immunity on ZIKV pathogenesis during pregnancy in a translational non-human primate model. Here we show that prior DENV-2 exposure enhanced ZIKV infection of maternal-fetal interface tissues in macaques. However, pre-existing DENV immunity had no detectable impact on ZIKV replication kinetics in maternal plasma, and all pregnancies progressed to term without adverse outcomes or gross fetal abnormalities detectable at delivery. Understanding the risks of ADE to pregnant women worldwide is critical as vaccines against DENV and ZIKV are developed and licensed and as DENV and ZIKV continue to circulate.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1583-1583
Author(s):  
Carol Shively ◽  
Kenysha Clear ◽  
Katherine Cook

Abstract Objectives Poor diet and obesity often go hand-in-hand and are difficult to discern which variable is the major driver of the gut microbiome. The objective of this study was to determine the impact of obesity within dietary exposures on the gut microbiome and metabolic parameters using a non-human primate model. Methods Female M. fasicularis monkeys were fed a Western or Mediterranean diet for 2.5 years. We performed metagenomics sequencing on fecal samples obtained at 26 months. DNA was isolated from feces using Qiagen PowerSoil DNA extraction kit and metagenomics sequencing was performed for multikingdom microbiome analysis. DEXA scans for body adiposity and metabolic profiling were measured in each subject before the end of the study. Subjects were grouped by body fat composition (Lean (≤10% body fat) or Overweight/Obese (≥20% body fat)) and the impact of diet and adiposity was determine on the gut microbiome. Gut microbiota populations were correlated with metabolic parameters. Results Diet is the main determinant on gut microbiome α-diversity. Obesity had no significant outcome on Shannon diversity. Obesity within each dietary pattern can influence certain gut microbes. Lean Mediterranean diet-fed animals had significantly higher L. animals and C. comes that overweight animals fed the same diet. Obese Western diet-fed animals displayed elevated proportional abundance of S. infantarius and R. chanpaneliensis that lean Western diet-fed animals. Independent of adiposity, Western diet consumption lead to two distinct microbiome populations; P. copri high and P. copri low. P. copriHIGH displayed reduced α-diversity, increased abundance of other Prevotella species (P. stercorea, P. brevis, and P. bryantii), and increased F. prausnitzii. P. copri negatively correlated with α-diversity. P. copriLOW displayed increased proportional abundance of E. siraeum. Gut E. siraeum populations positively correlated with plasma HDL cholesterol levels. Conclusions Our data indicates that diet is a potent regulator of the gut microbiome, while body adiposity can subtly shift specific gut microbiota taxa within subjects fed a specific dietary pattern. Moreover, our data indicates at a sub-group of metabolically healthier subjects on a Western diet characterized by low P. copri microbiota abundance. Funding Sources NIH and DOD BCRP.


2021 ◽  
Vol 23 (Supplement_1) ◽  
pp. i48-i48
Author(s):  
Katherine Warren ◽  
Cynthia Lester McCully ◽  
Rafael Cruz Garcia ◽  
Sylwia Stopka ◽  
Michael Regan ◽  
...  

Abstract Adequate exposure (effective concentration over time) of a therapeutic agent at its site of action is essential for antitumor efficacy. Given constraints of repeat tissue sampling, non-human primate models predictive of pharmacokinetics in pediatric patients have been utilized to assess central nervous system (CNS) exposure. Assessment of cerebrospinal fluid (CSF) drug levels have been used to extrapolate CNS penetration but the relationship of CSF drug levels with tissue distribution is unclear. Utilizing microdialysis, we previously demonstrated geographic variability of drug permeability across the blood:brain barrier (BBB), but this technique is complex and has a high standard deviation. We, therefore, explored a novel technique, matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI), to compare plasma, CSF, and tissue drug levels in a terminal non-human primate model. Panobinostat, an HDAC inhibitor in clinical trials for DIPG/DMG, was selected for study as it has previously demonstrated poor CNS tissue penetration but suggested modest clinical activity. Methods Panobinostat (p.o., dose 1.6 mg/kg) was administered to non-tumor bearing primates (n=2). One hour following administration (Tmax), blood and CSF were collected, the animal euthanized, brain and spinal cord extracted, and immediately frozen at -80. Panobinostat distribution was mapped on ex vivo sagittal tissue sections using MALDI MSI. To provide specificity and degree of permeability, anatomical structures were segmented for analysis to determine drug concentrations. Blood, CSF and tissue levels of panobinostat were measured via LC-MS/MS. Results Segmentation analysis revealed quantifiable panobinostat, particularly in the lateral ventricles and choroid plexus, and also in the subventricular zone and brainstem, although the overall panobinostat concentration was below the limit of quantitation in these areas. Conclusions Although not reflected in CSF PK, panobinostat is widely distributed in brain tissue. MALDI MSI allows regional assessment of panobinostat penetration and complements CSF pharmacokinetics.


Author(s):  
Monica T. Hinds ◽  
Azzdine Y. Ammi ◽  
Jennifer Johnson ◽  
Sanjiv Kaul
Keyword(s):  
Ex Vivo ◽  

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 382-382
Author(s):  
Xin Guan ◽  
Meng Qin ◽  
Yu Zhang ◽  
Zhihua Ren ◽  
Wenhong Jiang ◽  
...  

Abstract The ex vivo induction of megakaryocytes/platelets of hematopoietic stem cells represent an effective treatment for thrombocytopenia. We have previously reported a clinically feasible "two-stage culture system" for expanding CD34+ cells and producing megakaryocytes/platelets. With this culture system one cord-blood unit (2 × 106 - 5 × 106 CD34+ cells) yields sufficient megakaryocytes/platelets for treating up to 85 patients (with an average weight of 70 kg and infusion cell number 5.45 × 106 cells/kg). The induced human megakaryocytic cells were capable of producing functional platelets in xenotransplantation mouse model. Here, we further tested the safety and feasibility of ex vivo generated megakaryocytic progenitors/platelets in a myeloablative non-human primate model. Mobilized peripheral blood CD34+ cells of cynomolgus monkeys (Macaca fascicularis) wereisolated after daily administration of G-CSF (100 μg/kg/day) and SCF (50 μg/kg/day) for five days. Expansion and subsequent differentiation of CD34+ cells and megakaryocytic progenitor cells were performed in a modified IMDM basal medium supplemented with various cytokine combinations including stem cell factor, Flt-3 ligand, thrombopoietin, interleukin 3, StemRegenin 1, interleukin 6 for 8 days. The expansion and differentiation processes were closely monitored by flow cytometry for expression of cell surface markers. In vitro morphological identification and CFU assays were carried out for monkey megakaryocytic progenitors. Furthermore, safety and efficacy of induced megakaryocytic progenitor cells were evaluated in vivo by using a thrombocytopenia model of monkeys. Briefly, cynomolgus monkeys were administered with carboplatin at a dose of 8 mg/kg/day on days 1, 2 and 3. On day 7 after the first carboplatin injection, the experimental group monkeys were infused with megakaryocytic progenitor cells (4.6±1.2 × 106/kg ) labeled with anti-monkey IgG-microbead-FITC conjugates. Negative control group was treated with normal saline. Peripheral blood and bone marrow from the tested animals were obtained for analyzing cell differentiation at various times. In vivo bleeding time was recorded to assess the matured platelet function, which was the time length of the bleeding to stop by making a cut in the forearm of the monkeys. After culturing for 8 days, total cells were expanded up to 13.65±3.79-fold. Analysis of the percentage of component cells further showed that CD34+, CD41+, and CD34+/CD41+ megakaryocytic progenitor cells were 46.8%±3.2%, 22.9%±4.6%, and 20.3%±2.8%, respectively. Induced megakaryocytic cells were morphologically distinguishable as they were much larger than CD34+ cells with apparent lobular nuclei. CFU analysis revealed that they increased 12±4.3-fold on day 8 as compared with day 1. In the experimental group, platelet count nadir occurred on day 14 or 15 with 40% of normal value and completely recovered to the normal value on day 26. On the other hand, the nadir of the platelet count in the control group occurred on day 19 or 20 with 20% of normal value and recovered to the normal on day 32. During the nadir phase (from days 14 to 20), the in vivo bleeding time of experimental group was considered normal (6-7.5 minutes) relative to untreated normal monkey values (range 5-7 minutes), whereas it was longer (~8.5 minutes) in control group. Likewise, the nadir of white blood cell (WBC) count (with 45% of the normal value) occurred on day 17, which completely recovered on day 22 for the monkeys infused with induced megakaryocytic progenitors/ platelets. On the other hand, the nadir of WBC count of the control group was 35% of normal value on day 19, which recovered to the normal on day 36. Fifteen days after infusion, flow cytometry and fluorescent microscope analyses showed that about 1% of fluorescent cells remained in bone marrow, indicating successful engraftment of CD34+ stem/progenitor cells in the infused cell preparation. The infused monkeys have survived with no apparent abnormalities for more than one year. Combined, our results strongly suggest that functional human megakaryocytes/platelets can be produced in a large-scale from CD34+ cells for potential clinical application. More importantly, induced non-human primate megakaryocytic progenitors/platelets can be safely administrated to myelosuppressive monkeys, contributing to platelet recovery and early engraftment. Disclosures Qin: Biopharmagen. corp: Employment. Ren:Biopharmagen corp: Employment. Jiang:Biopharmagen.corp: Employment.


2000 ◽  
Vol 28 (7) ◽  
pp. 109
Author(s):  
Jean Marc Bertho ◽  
Johanna Frick ◽  
Christelle Demarquay ◽  
Armelle Lauby ◽  
Christophe Joubert ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document