The role of biologically active peptides in tissue repair using umbilical cord mesenchymal stem cells

2012 ◽  
Vol 1270 (1) ◽  
pp. 93-97 ◽  
Author(s):  
Carlos Cabrera ◽  
Gabriela Carriquiry ◽  
Chiara Pierinelli ◽  
Nancy Reinoso ◽  
Javier Arias-Stella ◽  
...  
2020 ◽  
Vol 26 (17) ◽  
pp. 2022-2037 ◽  
Author(s):  
Guifang Zhao ◽  
Yiwen Ge ◽  
Chenyingnan Zhang ◽  
Leyi Zhang ◽  
Junjie Xu ◽  
...  

Mesenchymal stem cells (MSCs) are a kind of adult stem cells with self-replication and multidirectional differentiation, which can differentiate into tissue-specific cells under physiological conditions, maintaining tissue self-renewal and physiological functions. They play a role in the pathological condition by lateral differentiation into tissue-specific cells, replacing damaged tissue cells by playing the role of a regenerative medicine , or repairing damaged tissues through angiogenesis, thereby, regulating immune responses, inflammatory responses, and inhibiting apoptosis. It has become an important seed cell for tissue repair and organ reconstruction, and cell therapy based on MSCs has been widely used clinically. The study found that the probability of stem cells migrating to the damaged area after transplantation or differentiating into damaged cells is very low, so the researchers believe the leading role of stem cell transplantation for tissue repair is paracrine secretion, secreting growth factors, cytokines or other components. Exosomes are biologically active small vesicles secreted by MSCs. Recent studies have shown that they can transfer functional proteins, RNA, microRNAs, and lncRNAs between cells, and greatly reduce the immune response. Under the premise of promoting proliferation and inhibition of apoptosis, they play a repair role in tissue damage, which is caused by a variety of diseases. In this paper, the biological characteristics of exosomes (MSCs-exosomes) derived from mesenchymal stem cells, intercellular transport mechanisms, and their research progress in the field of stem cell therapy are reviewed.


2020 ◽  
Vol 20 (4) ◽  
pp. 318-324 ◽  
Author(s):  
Lei Yang ◽  
Shuoji Zhu ◽  
Yongqing Li ◽  
Jian Zhuang ◽  
Jimei Chen ◽  
...  

Background: Our previous studies have shown that Pygo (Pygopus) in Drosophila plays a critical role in adult heart function that is likely conserved in mammals. However, its role in the differentiation of human umbilical cord mesenchymal stem cells (hUC-MSCs) into cardiomyocytes remains unknown. Objective: To investigate the role of pygo2 in the differentiation of hUC-MSCs into cardiomyocytes. Methods: Third passage hUC-MSCs were divided into two groups: a p+ group infected with the GV492-pygo2 virus and a p− group infected with the GV492 virus. After infection and 3 or 21 days of incubation, Quantitative real-time PCR (qRT-PCR) was performed to detect pluripotency markers, including OCT-4 and SOX2. Nkx2.5, Gata-4 and cTnT were detected by immunofluorescence at 7, 14 and 21 days post-infection, respectively. Expression of cardiac-related genes—including Nkx2.5, Gata-4, TNNT2, MEF2c, ISL-1, FOXH1, KDR, αMHC and α-Actin—were analyzed by qRT-PCR following transfection with the virus at one, two and three weeks. Results : After three days of incubation, there were no significant changes in the expression of the pluripotency stem cell markers OCT-4 and SOX2 in the p+ group hUC-MSCs relative to controls (OCT-4: 1.03 ± 0.096 VS 1, P > 0.05, SOX2: 1.071 ± 0.189 VS 1, P > 0.05); however, after 21 days, significant decreases were observed (OCT-4: 0.164 ± 0.098 VS 1, P < 0.01, SOX2: 0.209 ± 0.109 VS 1, P < 0.001). Seven days following incubation, expression of mesoderm specialisation markers, such as Nkx2.5, Gata-4, MEF2c and KDR, were increased; at 14 days following incubation, expression of cardiac genes, such as Nkx2.5, Gata-4, TNNT2, MEF2c, ISL-1, FOXH1, KDR, αMHC and α-Actin, were significantly upregulated in the p+ group relative to the p− group (P < 0.05). Taken together, these findings suggest that overexpression of pygo2 results in more hUCMSCs gradually differentiating into cardiomyocyte-like cells. Conclusion: We are the first to show that overexpression of pygo2 significantly enhances the expression of cardiac-genic genes, including Nkx2.5 and Gata-4, and promotes the differentiation of hUC-MSCs into cardiomyocyte-like cells.


2017 ◽  
Vol 53 (02) ◽  
pp. 104-120 ◽  
Author(s):  
Manisha Singh ◽  
Suchi Gupta ◽  
Sonali Rawat ◽  
Swati Midha ◽  
Krishan Gopal Jain ◽  
...  

ABSTRACTCell replacement therapy holds a promising future in the treatment of degenerative diseases related to neuronal, cardiac and bone tissues. In such kind of diseases, there is a progressive loss of specific types of cells. Currently the most upcoming and trusted cell candidate is Mesenchymal Stem Cells (MSCs) as these cells are easy to isolate from the tissue, easy to maintain and expand and no ethical concerns are linked. MSCs can be obtained from a number of sources like bone marrow, umbilical cord blood, umbilical cord, dental pulp, adipose tissues, etc. MSCs help in tissue repair and regeneration by various mechanisms of action like cell differentiation, immunomodulation, paracrine effect, etc. The future of regenerative medicine lies in tissue engineering and exploiting various properties to yield maximum output. In the current review article, we have targeted the repair and regeneration mechanisms of MSCs in neurodegenerative diseases, cardiac diseases and those related to bones. Yet there is a lot to understand, discover and then understand again about the molecular mechanisms of MSCs and then applying this knowledge in developing the therapy to get maximum repair and regeneration of concerned tissue and in turn the recovery of the patient.


2012 ◽  
Vol 2 (1) ◽  
pp. 8 ◽  
Author(s):  
Zhipeng Han ◽  
Yingying Jing ◽  
Shanshan Zhang ◽  
Yang Liu ◽  
Yufang Shi ◽  
...  

2009 ◽  
Vol 18 (8) ◽  
pp. 1211-1220 ◽  
Author(s):  
Sabino Ciavarella ◽  
Franco Dammacco ◽  
Monica De Matteo ◽  
Giuseppe Loverro ◽  
Franco Silvestris

Sign in / Sign up

Export Citation Format

Share Document