Umbilical Cord Mesenchymal Stem Cells: Role of Regulatory Genes in Their Differentiation to Osteoblasts

2009 ◽  
Vol 18 (8) ◽  
pp. 1211-1220 ◽  
Author(s):  
Sabino Ciavarella ◽  
Franco Dammacco ◽  
Monica De Matteo ◽  
Giuseppe Loverro ◽  
Franco Silvestris
2020 ◽  
Vol 20 (4) ◽  
pp. 318-324 ◽  
Author(s):  
Lei Yang ◽  
Shuoji Zhu ◽  
Yongqing Li ◽  
Jian Zhuang ◽  
Jimei Chen ◽  
...  

Background: Our previous studies have shown that Pygo (Pygopus) in Drosophila plays a critical role in adult heart function that is likely conserved in mammals. However, its role in the differentiation of human umbilical cord mesenchymal stem cells (hUC-MSCs) into cardiomyocytes remains unknown. Objective: To investigate the role of pygo2 in the differentiation of hUC-MSCs into cardiomyocytes. Methods: Third passage hUC-MSCs were divided into two groups: a p+ group infected with the GV492-pygo2 virus and a p− group infected with the GV492 virus. After infection and 3 or 21 days of incubation, Quantitative real-time PCR (qRT-PCR) was performed to detect pluripotency markers, including OCT-4 and SOX2. Nkx2.5, Gata-4 and cTnT were detected by immunofluorescence at 7, 14 and 21 days post-infection, respectively. Expression of cardiac-related genes—including Nkx2.5, Gata-4, TNNT2, MEF2c, ISL-1, FOXH1, KDR, αMHC and α-Actin—were analyzed by qRT-PCR following transfection with the virus at one, two and three weeks. Results : After three days of incubation, there were no significant changes in the expression of the pluripotency stem cell markers OCT-4 and SOX2 in the p+ group hUC-MSCs relative to controls (OCT-4: 1.03 ± 0.096 VS 1, P > 0.05, SOX2: 1.071 ± 0.189 VS 1, P > 0.05); however, after 21 days, significant decreases were observed (OCT-4: 0.164 ± 0.098 VS 1, P < 0.01, SOX2: 0.209 ± 0.109 VS 1, P < 0.001). Seven days following incubation, expression of mesoderm specialisation markers, such as Nkx2.5, Gata-4, MEF2c and KDR, were increased; at 14 days following incubation, expression of cardiac genes, such as Nkx2.5, Gata-4, TNNT2, MEF2c, ISL-1, FOXH1, KDR, αMHC and α-Actin, were significantly upregulated in the p+ group relative to the p− group (P < 0.05). Taken together, these findings suggest that overexpression of pygo2 results in more hUCMSCs gradually differentiating into cardiomyocyte-like cells. Conclusion: We are the first to show that overexpression of pygo2 significantly enhances the expression of cardiac-genic genes, including Nkx2.5 and Gata-4, and promotes the differentiation of hUC-MSCs into cardiomyocyte-like cells.


PLoS ONE ◽  
2019 ◽  
Vol 14 (6) ◽  
pp. e0218437 ◽  
Author(s):  
Daniela Surico ◽  
Valerio Bordino ◽  
Vincenzo Cantaluppi ◽  
David Mary ◽  
Sergio Gentilli ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Lunyu Yang ◽  
Zhang Bin ◽  
Shi Hui ◽  
Li Rong ◽  
Benshuai You ◽  
...  

Mesenchymal stem cells derived from human umbilical cord (hucMSCs) are considered a promising tool for regenerative medicine. circRNAs as newly discovered noncoding RNAs are involved in multiple biological processes. However, little has been known about the function of circRNAs in the proliferation and differentiation of hucMSCs. In this study, we selected several circRNAs expressed in MSCs from circBase and found that CDR1as expression level was markedly significant. We observed that, compared with that of uninduced hucMSCs, the CDR1as expression level of induced hucMSCs decreased with cell induction differentiation. By using siRNA to knock down CDR1as of hucMSCs, we discovered that proliferation was inhibited but the apoptosis increased. In addition, we found that the expression of stemness transcription factors (STFs) was downregulated after CDR1as knockdown and the adipogenesis and osteogenesis potential of hucMSCs was impaired. Our findings suggest that CDR1as takes a part in maintaining proliferation and differentiation of hucMSCs, providing clues for MSC modification and further for stem cell therapy and tissue regeneration.


2013 ◽  
Vol 114 (10) ◽  
pp. 2231-2239 ◽  
Author(s):  
Yunshuai Wang ◽  
Tao Chen ◽  
Hongjie Yan ◽  
Hui Qi ◽  
Chunyan Deng ◽  
...  

Author(s):  
Nguyen Thu Huyen ◽  
Duong Minh Chau ◽  
Do Thi Xuan Phuong ◽  
Nguyen Thanh Liem ◽  
Than Thi Trang Uyen

Extracellular vesicles (EVs) are emerging as a potential candidate for disease treatment due to their bioactive cargoes. Recently, mesenchymal stem cells (MSC)-derived EVs have shown their capacity to replace parental cells as their similar functions to MSCs. The therapeutic effects of EVs depend on their cargo, such as DNA, miRNA, proteins, and lipids. In this study, we expanded umbilical cord-derived MSCs (UCMSCs) for EV release. Additionally, we evaluated the expression level of several microRNAs in three EV populations, including apoptotic bodies (AB), microvesicles (MV), and exosomes (EX). Results showed that UCMSCs released three EV types: AB, MV, and EX into culture media. The three EV populations were different in morphology and size. Three EVs were detected to carry microRNAs, such as hsa-miR-320, hsa-miR-181b, and hsa-miR-140. Among these microRNAs, hsa-miR-140 expressed with the greatest level, followed by hsa-miR-181b and hsa-miR-320. The results of this study provide more knowledge about UCMSC-derived EV miRNAs in addition to reveal the potential role of UCMSC-EVs associated with detected miRNAs.


Sign in / Sign up

Export Citation Format

Share Document