Water flow in the toad urinary bladder in response to vasopressin: role of potassium

1989 ◽  
Vol 66 (1-2) ◽  
pp. 43-51 ◽  
Author(s):  
Christos P. Carvounis ◽  
Georgia Carvounis ◽  
Cheryl Bernstein ◽  
Mary E. Oros
Author(s):  
A.J. Mia ◽  
L.X. Oakford ◽  
T. Yorio

Protein kinase C (PKC) isozymes, when activated, are translocated to particulate membrane fractions for transport to the apical membrane surface in a variety of cell types. Evidence of PKC translocation was demonstrated in human megakaryoblastic leukemic cells, and in cardiac myocytes and fibroblasts, using FTTC immunofluorescent antibody labeling techniques. Recently, we reported immunogold localizations of PKC subtypes I and II in toad urinary bladder epithelia, following 60 min stimulation with Mezerein (MZ), a PKC activator, or antidiuretic hormone (ADH). Localization of isozyme subtypes I and n was carried out in separate grids using specific monoclonal antibodies with subsequent labeling with 20nm protein A-gold probes. Each PKC subtype was found to be distributed singularly and in discrete isolated patches in the cytosol as well as in the apical membrane domains. To determine if the PKC isozymes co-localized within the cell, a double immunogold labeling technique using single grids was utilized.


1996 ◽  
Vol 270 (1) ◽  
pp. C372-C381 ◽  
Author(s):  
J. Siner ◽  
A. Paredes ◽  
C. Hosselet ◽  
T. Hammond ◽  
K. Strange ◽  
...  

Regulation of total body water balance in amphibians by antidiuretic hormone (ADH) contributed to their successful colonization of terrestrial habitats approximately 200-300 million years ago. In the mammalian kidney, ADH modulates epithelial cell apical membrane water permeability (Pf) by fusion and retrieval of cytoplasmic vesicles containing water channel proteins called aquaporins (AQPs). To determine the role of AQPs in ADH-elicited Pf in amphibians, we have identified and characterized a unique AQP from Bufo marinus called AQP toad bladder (AQP-TB). AQP-TB possesses many structural features common to other AQPs, AQP-TB is expressed abundantly in ADH-responsive tissues, including toad urinary bladder and skin as well as lung, skeletal muscle, kidney, and brain. In a manner identical to that reported for the mammalian ADH-elicited water channel AQP2, AQP-TB expression is increased significantly by intervals of dehydration or chronic ADH stimulation. However, expression of AQP-TB protein in Xenopus laevis oocytes does not significantly increase oocyte Pf. The lack of expression of functional AQP-TB water channels in oocytes may result from intracellular sequestration of AQP-TB due to the presence of a YXRF sequence motif present in its carboxyterminal domain.


1994 ◽  
Vol 267 (1) ◽  
pp. F106-F113
Author(s):  
F. Emma ◽  
H. W. Harris ◽  
K. Strange

It is well established that water channels (WC) are removed from the apical membrane of vasopressin-sensitive epithelia by endocytosis. The processing and the ultimate fate of endocytosed WC is, however, incompletely understood. In many cells, endosome acidification plays an important role in the processing and sorting of endocytosed proteins. Endosome acidification in the toad urinary bladder was therefore examined in vivo by fluorescence ratio video microscopy after induction of endocytosis by vasopressin removal and transepithelial water flow in the presence of the pH-sensitive fluid phase marker 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein-dextran. Fifteen minutes after induction of endocytosis, the majority of endosomes had a neutral or slightly acidic pH. The number of acidic endosomes increased progressively with time. Two hours after endocytosis began, 98% of the endosomes had a pH < 6.0. Bafilomycin completely blocked endosome acidification, indicating that H+ transport is mediated by a vacuolar H(+)-adenosinetriphosphatase. Bafilomycin had no effect on transepithelial water flow in bladders repetitively stimulated by vasopressin. These findings, as well as the work of other investigators, suggest that if WC recycling occurs, it is not dependent on acidification of the endosomal compartment. Acidification of vasopressin-induced endosomes most likely represents a terminal event in the endocytic pathway.


1984 ◽  
Vol 246 (4) ◽  
pp. F501-F508
Author(s):  
L. G. Palmer ◽  
N. Speez

To test the hypothesis that antidiuretic hormone- (ADH) dependent water permeability is associated with changes in apical membrane area, hormone-dependent water flow and capacitance changes were measured in the toad urinary bladder under a number of different conditions. Dose-response relationships for water flow (Jv) and capacitance increases (delta C) were similar from 1 to 20 mU/ml ADH. At higher concentrations, Jv reached a plateau, while delta C decreased. The decrease in delta C was prevented by elimination of the osmotic gradient across the tissue. Serosal hydrazine (10 mM) increased Jv sevenfold and delta C threefold in the presence of 1 mU/ml ADH. Mucosal NH4Cl, at constant mucosal pH, increased Jv by 50-100%, but did not significantly change delta C. In the absence of an osmotic gradient, mucosal NH+4 increased delta C by 50%. NH4Cl had no effect on hydroosmotic response to 8-bromo-adenosine 3',5'-cyclic monophosphate (cAMP). Mucosal CO2 (9%) decreased Jv by greater than 90%, and delta C by 60% with 20 mU/ml ADH. Mucosal CO2 also inhibited the hydroosmotic response to 8-bromo-cAMP. Removal of serosal Na diminished cAMP-dependent Jv and delta C. The results confirmed the close relationship between ADH-dependent water permeability and membrane capacitance. They indicate, however, that under some circumstances membrane may be retrieved from the apical surface without affecting water permeability.


1988 ◽  
Vol 254 (1) ◽  
pp. F139-F144
Author(s):  
B. S. Hoch ◽  
M. B. Ast ◽  
M. J. Fusco ◽  
M. Jacoby ◽  
S. D. Levine

Vasopressin stimulates the introduction of aggregated particles, which may represent pathways for water flow, into the luminal membrane of toad urinary bladder. It is not known whether water transport pathways are degraded on removal from membrane or whether they are recycled. We examined the effect of the protein synthesis inhibitors cycloheximide and puromycin using repeated 30-min cycles of vasopressin followed by washout of vasopressin, all in the presence of an osmotic gradient, a protocol that maximizes aggregate turnover. “High dose” cycloheximide (200 micrograms/ml) inhibited flow immediately. “Low dose” cycloheximide (1 microgram/ml) did not affect initial flow; however, flow was inhibited by the fourth restimulation. On further rechallenge, inhibition persisted but did not increase. In the absence of vasopressin, inhibition did not develop. Despite the inhibition of flow in vasopressin-treated tissues, the cAMP-dependent protein kinase ratio (-cAMP/+cAMP), an index of in vivo cAMP effect, was elevated in cycloheximide-treated tissues, suggesting modulation at a distal site in the stimulatory cascade. Cycloheximide inhibited flow when 10 microM forskolin or 0.2 mM 8-BrcAMP was substituted for vasopressin in the fourth period; however, MIX (4 mM)-stimulated flow was enhanced by 1 microgram/ml cycloheximide but inhibited by 200 micrograms/ml cycloheximide. [14C]urea permeability was not inhibited by cycloheximide. Puromycin (0.5 mM) also inhibited water flow by the fourth challenge with vasopressin. The data suggest that protein synthesis inhibitors attenuate flow at a site that is distal to cAMP-dependent protein kinase.(ABSTRACT TRUNCATED AT 250 WORDS)


1970 ◽  
Vol 46 (2) ◽  
pp. 235-244 ◽  
Author(s):  
Donald R. DiBona ◽  
Mortimer M. Civan

Phase microscopy of toad urinary bladder has demonstrated that vasopressin can cause an enlargement of the epithelial intercellular spaces under conditions of no net transfer of water or sodium. The suggestion that this phenomenon is linked to the hormone's action as a smooth muscle relaxant has been tested and verified with the use of other agents effecting smooth muscle: atropine and adenine compounds (relaxants), K+ and acetylcholine (contractants). Furthermore, it was possible to reduce the size and number of intercellular spaces, relative to a control, while increasing the rate of osmotic water flow. A method for quantifying these results has been developed and shows that they are, indeed, significant. It is concluded, therefore, that the configuration of intercellular spaces is not a reliable index of water flow across this epithelium and that such a morphologic-physiologic relationship is tenuous in any epithelium supported by a submucosa rich in smooth muscle.


Sign in / Sign up

Export Citation Format

Share Document