Psychotropic drug competition for [3H]imipramine binding further indicates the presence of only one high-affinity drug binding site on human α1-acid glycoprotein

1983 ◽  
Vol 35 (10) ◽  
pp. 684-686 ◽  
Author(s):  
Walter E. Müller ◽  
Angelika E. Stillbauer ◽  
Safaa El-Gamal
2017 ◽  
Author(s):  
Gregory M. Martin ◽  
Balamurugan Kandasamy ◽  
Frank DiMaio ◽  
Craig Yoshioka ◽  
Show-Ling Shyng

AbstractSulfonylureas are anti-diabetic medications that act by inhibiting pancreatic KATP channels composed of SUR1 and Kir6.2. The mechanism by which these drugs interact with and inhibit the channel has been extensively investigated, yet it remains unclear where the drug binding pocket resides. Here, we present a cryo-EM structure of the channel bound to a high-affinity sulfonylurea drug glibenclamide and ATP at 3.8Å resolution, which reveals in unprecedented details of the ATP and glibenclamide binding sites. Importantly, the structure shows for the first time that glibenclamide is lodged in the transmembrane bundle of the SUR1-ABC core connected to the first nucleotide binding domain near the inner leaflet of the lipid bilayer. Mutation of residues predicted to interact with glibenclamide in our model led to reduced sensitivity to glibenclamide. Our structure provides novel mechanistic insights of how sulfonylureas and ATP interact with the KATP channel complex to inhibit channel activity.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1793-C1793
Author(s):  
Paul Rowland ◽  
Onkar SINGH ◽  
Leila Ross ◽  
Francisco Gamo ◽  
Maria Lafuente-Monasterio ◽  
...  

Malaria is a preventable and treatable disease, yet annually there are still hundreds of thousands of malaria-related deaths. The disease is caused by infection with mosquito-borne Plasmodium parasites. With hundreds of millions of cases each year there is a very high potential for drug resistance and this has compromised many existing therapies. One target under investigation is the enzyme dihydroorotate dehydrogenase (DHODH) which catalyses the rate-limiting step of pyrimidine biosynthesis and is an essential enzyme in the malaria parasite. There are currently several Plasmodium-selective DHODH inhibitors under development. To investigate the potential for drug resistance against DHODH inhibitors in vitro resistance selections were carried out using known inhibitors from different structural classes [1]. These studies identified point mutations in the drug binding site which lead to reduced sensitivity to the inhibitors, and in some cases increased sensitivity to a different inhibitor, suggesting a novel combination therapy approach to combat resistance. To help understand the significance of the inhibitor binding site mutations we determined the crystal structures of P. falciparum DHODH in complex with the inhibitors Genz-669178, IDI-6253 and IDI-6273. Co-crystallisation experiments led to a new crystal form in each case. Here we describe the crystal structures, the binding modes of the inhibitors and the great flexibility of the binding site, which is able to adjust to accommodate different inhibitor series. The structural role of the resistance mutations is also discussed.


2020 ◽  
Vol 21 (20) ◽  
pp. 7511
Author(s):  
Wu Xu ◽  
Xiao-Jun Xie ◽  
Ali K. Faust ◽  
Mengmeng Liu ◽  
Xiao Li ◽  
...  

Cyclin-dependent kinase 8 (CDK8) and its regulatory partner Cyclin C (CycC) play conserved roles in modulating RNA polymerase II (Pol II)-dependent gene expression. To understand the structure and function relations of CDK8, we analyzed the structures of human and Drosophila CDK8 proteins using molecular dynamics simulations, combined with functional analyses in Drosophila. Specifically, we evaluated the structural differences between hCDK8 and dCDK8 to predict the effects of the LXXLL motif mutation (AQKAA), the P154L mutations, and drug binding on local structures of the CDK8 proteins. First, we have observed that both the LXXLL motif and the kinase activity of CDK8 are required for the normal larval-to-pupal transition in Drosophila. Second, our molecular dynamic analyses have revealed that hCDK8 has higher hydrogen bond occupation of His149-Asp151 and Asp151-Asn156 than dCDK8. Third, the substructure of Asp282, Phe283, Arg285, Thr287 and Cys291 can distinguish human and Drosophila CDK8 structures. In addition, there are two hydrogen bonds in the LXXLL motif: a lower occupation between L312 and L315, and a relatively higher occupation between L312 and L316. Human CDK8 has higher hydrogen bond occupation between L312 and L316 than dCDK8. Moreover, L312, L315 and L316 in the LXXLL motif of CDK8 have the specific pattern of hydrogen bonds and geometries, which could be crucial for the binding to nuclear receptors. Furthermore, the P154L mutation dramatically decreases the hydrogen bond between L312 and L315 in hCDK8, but not in dCDK8. The mutations of P154L and AQKAA modestly alter the local structures around residues 154. Finally, we identified the inhibitor-induced conformational changes of hCDK8, and our results suggest a structural difference in the drug-binding site between hCDK8 and dCDK8. Taken together, these results provide the structural insights into the roles of the LXXLL motif and the kinase activity of CDK8 in vivo.


2000 ◽  
Vol 44 (8) ◽  
pp. 2100-2108 ◽  
Author(s):  
Michael Korsinczky ◽  
Nanhua Chen ◽  
Barbara Kotecka ◽  
Allan Saul ◽  
Karl Rieckmann ◽  
...  

ABSTRACT Atovaquone is the major active component of the new antimalarial drug Malarone. Considerable evidence suggests that malaria parasites become resistant to atovaquone quickly if atovaquone is used as a sole agent. The mechanism by which the parasite develops resistance to atovaquone is not yet fully understood. Atovaquone has been shown to inhibit the cytochrome bc 1 (CYTbc 1) complex of the electron transport chain of malaria parasites. Here we report point mutations in Plasmodium falciparum CYT b that are associated with atovaquone resistance. Single or double amino acid mutations were detected from parasites that originated from a cloned line and survived various concentrations of atovaquone in vitro. A single amino acid mutation was detected in parasites isolated from a recrudescent patient following atovaquone treatment. These mutations are associated with a 25- to 9,354-fold range reduction in parasite susceptibility to atovaquone. Molecular modeling showed that amino acid mutations associated with atovaquone resistance are clustered around a putative atovaquone-binding site. Mutations in these positions are consistent with a reduced binding affinity of atovaquone for malaria parasite CYTb.


Sign in / Sign up

Export Citation Format

Share Document