The Formation of Rain by Coalescence in Very Shallow Cumulus

Tellus ◽  
1959 ◽  
Vol 11 (2) ◽  
pp. 216-219 ◽  
Author(s):  
B. J. MASON
Keyword(s):  
2018 ◽  
Vol 75 (11) ◽  
pp. 4031-4047 ◽  
Author(s):  
Yign Noh ◽  
Donggun Oh ◽  
Fabian Hoffmann ◽  
Siegfried Raasch

Abstract Cloud microphysics parameterizations for shallow cumulus clouds are analyzed based on Lagrangian cloud model (LCM) data, focusing on autoconversion and accretion. The autoconversion and accretion rates, A and C, respectively, are calculated directly by capturing the moment of the conversion of individual Lagrangian droplets from cloud droplets to raindrops, and it results in the reproduction of the formulas of A and C for the first time. Comparison with various parameterizations reveals the closest agreement with Tripoli and Cotton, such as and , where and are the mixing ratio and the number concentration of cloud droplets, is the mixing ratio of raindrops, is the threshold volume radius, and H is the Heaviside function. Furthermore, it is found that increases linearly with the dissipation rate and the standard deviation of radius and that decreases rapidly with while disappearing at > 3.5 μm. The LCM also reveals that and increase with time during the period of autoconversion, which helps to suppress the early precipitation by reducing A with smaller and larger in the initial stage. Finally, is found to be affected by the accumulated collisional growth, which determines the drop size distribution.


2021 ◽  
Vol 13 (12) ◽  
pp. 2309
Author(s):  
Jingjing Tian ◽  
Yunyan Zhang ◽  
Stephen A. Klein ◽  
Likun Wang ◽  
Rusen Öktem ◽  
...  

Summertime continental shallow cumulus clouds (ShCu) are detected using Geostationary Operational Environmental Satellite (GOES)-16 reflectance data, with cross-validation by observations from ground-based stereo cameras at the Department of Energy Atmospheric Radiation Measurement Southern Great Plains site. A ShCu cloudy pixel is identified when the GOES reflectance exceeds the clear-sky surface reflectance by a reflectance detection threshold of ShCu, ΔR. We firstly construct diurnally varying clear-sky surface reflectance maps and then estimate the ∆R. A GOES simulator is designed, projecting the clouds reconstructed by stereo cameras towards the surface along the satellite’s slanted viewing direction. The dynamic ShCu detection threshold ΔR is determined by making the GOES cloud fraction (CF) equal to the CF from the GOES simulator. Although there are temporal variabilities in ΔR, cloud fractions and cloud size distributions can be well reproduced using a constant ΔR value of 0.045. The method presented in this study enables daytime ShCu detection, which is usually falsely reported as clear sky in the GOES-16 cloud mask data product. Using this method, a new ShCu dataset can be generated to bridge the observational gap in detecting ShCu, which may transition into deep precipitating clouds, and to facilitate further studies on ShCu development over heterogenous land surface.


2007 ◽  
Vol 88 (12) ◽  
pp. S12-S18 ◽  
Author(s):  
Robert M. Rauber ◽  
Harry T. Ochs ◽  
L. Di Girolamo ◽  
S. Göke ◽  
E. Snodgrass ◽  
...  
Keyword(s):  

2010 ◽  
Vol 37 (10) ◽  
pp. n/a-n/a ◽  
Author(s):  
Jiming Sun ◽  
Parisa A. Ariya ◽  
Henry G. Leighton ◽  
M. K. Yau

2018 ◽  
Vol 75 (4) ◽  
pp. 1195-1214 ◽  
Author(s):  
Maren Brast ◽  
Vera Schemann ◽  
Roel A. J. Neggers

Abstract In this study, the scale adaptivity of a new parameterization scheme for shallow cumulus clouds in the gray zone is investigated. The eddy diffusivity/multiple mass flux [ED(MF)n] scheme is a bin-macrophysics scheme in which subgrid transport is formulated in terms of discretized size densities. While scale adaptivity in the ED component is achieved using a pragmatic blending approach, the MF component is filtered such that only the transport by plumes smaller than the grid size is maintained. For testing, ED(MF)n is implemented into a large-eddy simulation (LES) model, replacing the original subgrid scheme for turbulent transport. LES thus plays the role of a nonhydrostatic testing ground, which can be run at different resolutions to study the behavior of the parameterization scheme in the boundary layer gray zone. In this range, convective cumulus clouds are partially resolved. The authors find that for quasi-equilibrium marine subtropical conditions at high resolutions, the clouds and the turbulent transport are predominantly resolved by the LES. This partitioning changes toward coarser resolutions, with the representation of shallow cumulus clouds gradually becoming completely carried by the ED(MF)n. The way the partitioning changes with grid spacing matches the behavior diagnosed in coarse-grained LES fields, suggesting that some scale adaptivity is captured. Sensitivity studies show that the scale adaptivity of the ED closure is important and that the location of the gray zone is found to be moderately sensitive to some model constants.


2021 ◽  
Vol 13 (10) ◽  
Author(s):  
Pornampai Narenpitak ◽  
Jan Kazil ◽  
Takanobu Yamaguchi ◽  
Patricia Quinn ◽  
Graham Feingold
Keyword(s):  

2014 ◽  
Vol 7 (2) ◽  
pp. 2249-2291 ◽  
Author(s):  
J. K. Fletcher ◽  
C. S. Bretherton ◽  
H. Xiao ◽  
R. Sun ◽  
J. Han

Abstract. The current operational version of National Centers for Environmental Prediction (NCEP) Global Forecasting System (GFS) shows significant low cloud bias. These biases also appear in the Coupled Forecast System (CFS), which is developed from the GFS. These low cloud biases degrade seasonal and longer climate forecasts, particularly of shortwave cloud radiative forcing, and affect predicted sea-surface temperature. Reducing this bias in the GFS will aid the development of future CFS versions and contributes to NCEP's goal of unified weather and climate modelling. Changes are made to the shallow convection and planetary boundary layer parametrisations to make them more consistent with current knowledge of these processes and to reduce the low cloud bias. These changes are tested in a single-column version of GFS and in global simulations with GFS coupled to a dynamical ocean model. In the single column model, we focus on changing parameters that set the following: the strength of shallow cumulus lateral entrainment, the conversion of updraught liquid water to precipitation and grid-scale condensate, shallow cumulus cloud top, and the effect of shallow convection in stratocumulus environments. Results show that these changes improve the single-column simulations when compared to large eddy simulations, in particular through decreasing the precipitation efficiency of boundary layer clouds. These changes, combined with a few other model improvements, also reduce boundary layer cloud and albedo biases in global coupled simulations.


2005 ◽  
Vol 5 (5) ◽  
pp. 8811-8849
Author(s):  
J. Vilà-Guerau de Arellano ◽  
S.-W. Kim ◽  
M. C. Barth ◽  
E. G. Patton

Abstract. The distribution and evolution of reactive species in a boundary layer characterized by the presence of shallow cumulus over land is studied by means of two large-eddy simulation models: the NCAR and WUR codes. The study focuses on two physical processes that can influence the chemistry: the enhancement of the vertical transport by the buoyant convection associated with cloud formation and the perturbation of the photolysis rates below, in and above the clouds. It is shown that the dilution of the reactant mixing ratio caused by the deepening of the atmospheric boundary layer is an important process and that it can decrease reactant mixing ratios by 10 to 50 percent compared to very similar conditions but with no cloud formation. Additionally, clouds transport chemical species to higher elevations in the boundary layer compared to the case with no clouds which influences the reactant mixing ratios of the nocturnal residual layers following the collapse of the daytime boundary layer. Estimates of the rate of reactant transport based on the calculation of the integrated flux divergence range from to −0.2 ppb hr−1 to −1 ppb hr−1, indicating a net loss of sub-cloud layer air transported into the cloud layer. A comparison of this flux to a parameterized mass flux shows good agreement in mid-cloud, but at cloud base the parameterization underestimates the mass flux. Scattering of radiation by cloud drops perturbs photolysis rates. It is found that these perturbed photolysis rates substantially (10–40%) affect mixing ratios locally (spatially and temporally), but have little effect on mixing ratios averaged over space and time. We find that the ultraviolet radiance perturbation becomes more important for chemical transformations that react with a similar order time scale as the turbulent transport in clouds. Finally, the detailed intercomparison of the LES results shows very good agreement between the two codes when considering the evolution of the reactant mean, flux and (co-)variance vertical profiles.


Sign in / Sign up

Export Citation Format

Share Document