Changes in root xylem anatomy of peanut genotypes with different drought resistance levels under early‐season drought

Author(s):  
Nuengsap Thangthong ◽  
Sanun Jogloy ◽  
Nuntawoot Jongrungklang ◽  
Craig K. Kvien ◽  
Ian C. Dodd ◽  
...  
Agronomy ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 215 ◽  
Author(s):  
Nuengsap Thangthong ◽  
Sanun Jogloy ◽  
Tasanai Punjansing ◽  
Craig K. Kvien ◽  
Thawan Kesmala ◽  
...  

Changes in the anatomical structure of peanut roots due to early season drought will likely affect the water acquiring capacity of the root system. Yet, as important as these changes are likely to be in conferring drought resistance, they have not been thoroughly investigated. The objective of this study was to investigate the effects of different durations of drought on the root anatomy of peanut in response to early season drought. Plants of peanut genotype ICGV 98305 were grown in rhizoboxes with an internal dimension of 50 cm in width, 10 cm in thickness and 120 cm in height. Fourteen days after emergence, water was withheld for periods of 0, 7, 14 or 21 days. After these drought periods, the first and second order roots from 0–20 cm below soil surface were sampled for anatomical observation. The mean xylem vessel diameter of first- order lateral roots was higher than that of second- order lateral roots. Under early season drought stress root anatomy changes were more pronounced in the longer drought period treatments. Twenty-one days after imposing water stress, the drought treatment and irrigated treatment were clearly different in diameter, number and area of xylem vessels of first- and second-order lateral roots. Plants under drought conditions had a smaller diameter and area of xylem vessels than did the plants under irrigated control. The ability of plants to change root anatomy likely improves water uptake and transport and this may be an important mechanism for drought tolerance. The information will be useful for the selection of drought durations for evaluation of root anatomy related to drought resistance and the selection of key traits for drought resistance.


1998 ◽  
Vol 78 (2) ◽  
pp. 227-237 ◽  
Author(s):  
R. El Hafid ◽  
Dan H. Smith ◽  
M. Karrou ◽  
K. Samir

One of the common features of the Mediterranean climate in North Africa is the uncertainty of rainfall immediately after wheat (Triticum durum Desf) emerges. Relatively little work has been done to compare the drought resistance of spring durum wheat cultivars under early-season drought stress. There is a limited insight into the physiological basis of spring durum wheat drought resistance in rainfed Mediterranean regions. Field experiments were conducted in 1995 and 1996 growing seasons, and a greenhouse experiment was conducted in 1996 to examine differences in some physiological characters among six spring durum wheat cultivars in response to different durations of early-season drought, and rewatering; and to determine the relationships of these characters to drought resistance. Six spring durum wheat cultivars were evaluated under four water regimes. Water regime treatments were: a well-irrigated treatment; and three water deficit treatments imposed during the period from emergence through either the onset of tillering, mid-tillering or the end of tillering. Cultivars differed widely in their response to early season water stress. Under drought stress conditions, grain yield, aboveground dry matter yield, water use efficiency for the grain (WUEg) and for the total dry matter (WUEdm) were strongly positively associated with net CO2 uptake:transpiration ratio (A/E), and osmoregulation capacity. It is concluded that drought-induced changes in A, A/E, stomatal resistance, and osmotic adjustment are possible key control points in determining the drought-resistance of a cultivar. Furthermore, there is a substantial degree of intraspecific variation for the above mentioned physiological attributes to explore as a selection tool. Selection for high osmoregulation capacity and high A/E ratio would seem to be a justifiable means of improving total dry matter and grain yield under conditions of early-season water stress. Key words: Wheat, Triticum durum Desf., physiological attributes, early-season drought


2017 ◽  
Vol 204 (2) ◽  
pp. 111-122 ◽  
Author(s):  
N. Thangthong ◽  
S. Jogloy ◽  
N. Jongrungklang ◽  
C. K. Kvien ◽  
V. Pensuk ◽  
...  

Author(s):  
J.J.C. Scheffer ◽  
G.J. Wilson
Keyword(s):  

2019 ◽  
Vol 51 (6) ◽  
Author(s):  
Zhonghua Sheng ◽  
Sajid Fiaz ◽  
Qianlong Li ◽  
Wei Chen ◽  
Xiangjin Wei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document