Root distribution patterns of peanut genotypes with different drought resistance levels under early-season drought stress

2017 ◽  
Vol 204 (2) ◽  
pp. 111-122 ◽  
Author(s):  
N. Thangthong ◽  
S. Jogloy ◽  
N. Jongrungklang ◽  
C. K. Kvien ◽  
V. Pensuk ◽  
...  
2012 ◽  
Vol 127 ◽  
pp. 181-190 ◽  
Author(s):  
N. Jongrungklang ◽  
B. Toomsan ◽  
N. Vorasoot ◽  
S. Jogloy ◽  
K.J. Boote ◽  
...  

2018 ◽  
Author(s):  
Jariya Namwongsa ◽  
Nuntawoot Jongrungklang ◽  
Patcharin Songsri

Drought is an important factor reducing yield and quality of sugarcane. Root growth and physiological traits are important for maximizing water uptake to improve drought resistance. This study compared the root, shoot and physiological traits under drought stress (DS) and well-watered (WW) conditions of various sugarcane varieties grown in rhizoboxes in a greenhouse at the Field Crops Research Station of Khon Kaen University, Khon Kaen, Thailand. Data were recorded for the root, shoot and physiological traits (relative water content, stomatal conductance, SPAD chlorophyll meter reading and chlorophyll fluorescence) at 90 days after transplanting. Root samples were recovered from 11 soil layers at 10 cm intervals from the top to the bottom of the rhizobox, for root length and root dry weight measurements. Drought was imposed on sugarcane at early growth stages altered the root distribution patterns, and differences were evident among the sugarcane genotypes. The sugarcane genotypes adapted to water stress by increasing root length into deeper soil layers. Drought led to increased total root length in KK3, MPT06-166, K88-92, CP38-22, Kps01-12 and KPK98-40. Root lengths and stomatal conductance were positively correlated under WW and DS conditions. Root distribution in the lower soil layers and the percentage of root distribution were higher than those under well-watered conditions. The knowledge gained from this study will aid parental selection in sugarcane breeding programs for drought resistance as the findings strongly suggest that the physiological modification in the root system is a useful drought-resistant mechanism.


2016 ◽  
Vol 198 ◽  
pp. 40-49 ◽  
Author(s):  
Nuengsap Thangthong ◽  
Sanun Jogloy ◽  
Viboon Pensuk ◽  
Thawan Kesmala ◽  
Nimitr Vorasoot

1998 ◽  
Vol 78 (2) ◽  
pp. 227-237 ◽  
Author(s):  
R. El Hafid ◽  
Dan H. Smith ◽  
M. Karrou ◽  
K. Samir

One of the common features of the Mediterranean climate in North Africa is the uncertainty of rainfall immediately after wheat (Triticum durum Desf) emerges. Relatively little work has been done to compare the drought resistance of spring durum wheat cultivars under early-season drought stress. There is a limited insight into the physiological basis of spring durum wheat drought resistance in rainfed Mediterranean regions. Field experiments were conducted in 1995 and 1996 growing seasons, and a greenhouse experiment was conducted in 1996 to examine differences in some physiological characters among six spring durum wheat cultivars in response to different durations of early-season drought, and rewatering; and to determine the relationships of these characters to drought resistance. Six spring durum wheat cultivars were evaluated under four water regimes. Water regime treatments were: a well-irrigated treatment; and three water deficit treatments imposed during the period from emergence through either the onset of tillering, mid-tillering or the end of tillering. Cultivars differed widely in their response to early season water stress. Under drought stress conditions, grain yield, aboveground dry matter yield, water use efficiency for the grain (WUEg) and for the total dry matter (WUEdm) were strongly positively associated with net CO2 uptake:transpiration ratio (A/E), and osmoregulation capacity. It is concluded that drought-induced changes in A, A/E, stomatal resistance, and osmotic adjustment are possible key control points in determining the drought-resistance of a cultivar. Furthermore, there is a substantial degree of intraspecific variation for the above mentioned physiological attributes to explore as a selection tool. Selection for high osmoregulation capacity and high A/E ratio would seem to be a justifiable means of improving total dry matter and grain yield under conditions of early-season water stress. Key words: Wheat, Triticum durum Desf., physiological attributes, early-season drought


2020 ◽  
Vol 71 (19) ◽  
pp. 6092-6106 ◽  
Author(s):  
Ping-Xia Zhao ◽  
Zi-Qing Miao ◽  
Jing Zhang ◽  
Si-Yan Chen ◽  
Qian-Qian Liu ◽  
...  

Abstract Drought is one of the most important environmental factors limiting plant growth and productivity. The molecular mechanisms underlying plant drought resistance are complex and not yet fully understood. Here, we show that the Arabidopsis MADS-box transcription factor AGL16 acts as a negative regulator in drought resistance by regulating stomatal density and movement. Loss-of-AGL16 mutants were more resistant to drought stress and had higher relative water content, which was attributed to lower leaf stomatal density and more sensitive stomatal closure due to higher leaf ABA levels compared with the wild type. AGL16-overexpressing lines displayed the opposite phenotypes. AGL16 is preferentially expressed in guard cells and down-regulated in response to drought stress. The expression of CYP707A3 and AAO3 in ABA metabolism and SDD1 in stomatal development was altered in agl16 and overexpression lines, making them potential targets of AGL16. Using chromatin immunoprecipitation, transient transactivation, yeast one-hybrid, and electrophoretic mobility shift assays, we demonstrated that AGL16 was able to bind the CArG motifs in the promoters of the CYP707A3, AAO3, and SDD1 and regulate their transcription, leading to altered leaf stomatal density and ABA levels. Taking our findings together, AGL16 acts as a negative regulator of drought resistance by modulating leaf stomatal density and ABA accumulation.


2021 ◽  
Author(s):  
Yang Cao ◽  
fei song ◽  
Xingtang Zhao ◽  
Liming He ◽  
Yaguang Zhan

Abstract Background: In this study, sodium nitrate (SNP, a donor of nitric oxide) and methyl jasmonate (MJ) were used as exogenous hormones. The experiment was conducted with the offspring (interspecific hybrid) D110 of ash and ash, and their respective parents (non-interspecific hybrid) D113 and 4-3 as experimental materials. The experiment set up three experimental groups of drought stress, exogenous hormone SNP and MJ, and a control group under normal growth (non-drought stress), to study the physiological indicators and gene expression of manchurian ash. Result: The results showed that under drought stress and exogenous application of hormone SNP or MJ, there were significant differences between hybrids and parents in plant growth, photosynthesis, defense enzyme activity, hormone content and gene expression.Conclusions: This experiment provides a new theoretical support for the existing hormone breeding methods of manchurian ash, which can improve the drought resistance of manchurian ash and increase its survival rate in the wild. Increasing the growth rate and breeding efficiency of manchurian ash brings new ideas.


2020 ◽  
Author(s):  
Shipeng Yang ◽  
Lihui Wang ◽  
Qiwen Zhong ◽  
Guangnan Zhang ◽  
Haiwang Zhang ◽  
...  

Abstract Background Jerusalem artichoke (Helianthus tuberosus L.) is a highly stress-resistant crop, especially it grows normally in the desertified land of Qinghai-Tibet Plateau in the past two years, and has become a crop with agricultural, industrial and ecological functions. However, there are few studies on drought resistance of Jerusalem artichoke at present, and studies on the mechanisms of stress resistance of Jerusalem artichoke breeding and fructan are seriously lagging behind. In this study, we selected two differentially resistant cultivars for drought stress experiments with different concentration gradients, the aim was finding DEGs and metabolic pathways associated with drought stress. Results Based on an additional analysis of the metabolic pathways under drought stress using MapMan, the most different types of metabolism included secondary metabolism, light reaction metabolism and cell wall. As a whole, QY1 and QY3 both had a large number of up-regulated genes in the flavor pathway. It was suggested that flavonoids could help Jerusalem artichoke to resist drought stress and maintain normal metabolic activities. In addition, the gene analysis of the abscisic acid (ABA) key metabolic pathway showed that QY3 had more genes in NAC and WRKY than QY1, but QY1 had more genes in response to drought stress as a whole. By combining RNA-Seq and WGCNA, a weighted gene co-expression network was constructed and divided into modules. By analyzing specifically the expressed modules, four modules were found to have the highest correlation with drought. Further research on the genes revealed that all 16 genes related to histone, ABA and protein kinase had the highest significance in these pathways. Conclusions These findings represent the first RNA-Seq analysis of drought stress in Jerusalem artichoke, which is of substantial significance to explore the function of drought resistance in Jerusalem artichoke and the excavation of related genes.


2020 ◽  
Author(s):  
Yuhang Liu ◽  
Zhongqun He ◽  
Yongdong Xie ◽  
Lihong Su ◽  
Ruijie Zhang ◽  
...  

Abstract A pot experiment was conducted to investigate the growth, physiological changes and mechanism of drought resistance of Phedimus aizoon L. under different levels of water content .CK: 75% ~ 80% of the MWHC (maximum water holding capacity), Mild drought: 55% ~ 60%, Moderate drought: 40% ~ 45%, Severe drought: 20% ~ 25%.We observed that the plants grew normally in the first two treatments, even the mild drought promoted the growth of the roots. In the last two treatments, drought stress had a significant negative effect on plant growth, at the same time, Phedimus aizoon L. also made positive physiological response to cope with the drought: The aboveground part of the plant (leaf, plant height, stem diameter) was smaller, the waxy layer of the leaves was thickened, the stomata of the leaves were closed during the day, and only a few stomata were opened at night, which proved that the dark reaction cycle metabolism mode of the plant was transformed from C3 cycle to CAM pathway. The activity of antioxidant enzymes (SOD, POD and CAT) was continuously increased to alleviate the damage caused by drought. To ensure the relative stability of osmotic potential, the contents of osmoregulation substances such as proline, soluble sugar, soluble protein and trehalose increased correspondingly. But plants have limited regulatory power, with aggravation of drought stress degree and extension of stress time, the MDA content and electrolyte leakage of leaves increased continuously. Observed under electron microscope,the morphology of chloroplast and mitochondria changed and the membrane structure was destroyed. The plant's photosynthetic and respiratory mechanisms are destroyed and the plant gradually die.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Jie-Xia Liu ◽  
Kai Feng ◽  
Ao-Qi Duan ◽  
Hui Li ◽  
Qing-Qing Yang ◽  
...  

Abstract Background Celery is a widely cultivated vegetable abundant in ascorbate (AsA), a natural plant antioxidant capable of scavenging free radicals generated by abiotic stress in plants. Ascorbate peroxidase (APX) is a plant antioxidant enzyme that is important in the synthesis of AsA and scavenging of excess hydrogen peroxide. However, the characteristics and functions of APX in celery remain unclear to date. Results In this study, a gene encoding APX was cloned from celery and named AgAPX1. The transcription level of the AgAPX1 gene was significantly upregulated under drought stress. AgAPX1 was expressed in Escherichia coli BL21 (DE3) and purified. The predicted molecular mass of rAgAPX1 was 33.16 kDa, which was verified by SDS-PAGE assay. The optimum pH and temperature for rAgAPX1 were 7.0 and 55 °C, respectively. Transgenic Arabidopsis hosting the AgAPX1 gene showed elevated AsA content, antioxidant capacity and drought resistance. Less decrease in net photosynthetic rate, chlorophyll content, and relative water content contributed to the high survival rate of transgenic Arabidopsis lines after drought. Conclusions The characteristics of APX in celery were different from that in other species. The enhanced drought resistance of overexpressing AgAPX1 in Arabidopsis may be achieved by increasing the accumulation of AsA, enhancing the activities of various antioxidant enzymes, and promoting stomatal closure. Our work provides new evidence to understand APX and its response mechanisms to drought stress in celery.


2020 ◽  
Author(s):  
Guori Gao ◽  
Zhongrui Lv ◽  
Guoyun Zhang ◽  
Jiayi Li ◽  
Jianguo Zhang ◽  
...  

Abstract Drought is the most severe abiotic stress and hinders the normal growth and development of plants. Sea buckthorn (Hippophae rhamnoides Linn.) is a typical drought-resistant tree species. In this study, the leaves of the H. rhamnoides ssp. sinensis (“FN”) and H. rhamnoides ssp. mongolica (“XY”) were selected during drought-recovery cycles for RNA sequencing, and physiological and biochemical analyses. The results revealed that drought stress significantly decreased leaf water potential, net photosynthetic rate, and stomatal conductance in both sea buckthorn subspecies. Similarly, the contents of flavone, flavonol, isoflavone and flavanone significantly decreased under drought stress in “XY.” Conversely, in “FN,” the flavone and abscisic acid (ABA) contents were significantly higher under drought stress and recovered after rehydration. Meanwhile, 4,618 and 6,100 differentially expressed genes (DEGs) were identified under drought stress in “FN” and “XY,” respectively. In total, 5,164 DEGs were observed in the comparison between “FN” and “XY” under drought stress. This was more than the 3,821 and 3,387 DEGs found when comparing the subspecies under control and rehydration conditions, respectively. These DEGs were mainly associated with carotenoid biosynthesis, flavonoid biosynthesis, photosynthesis, and plant hormone signal transduction. Six hub DEGs (ABCG5, ABCG22, ABCG32, ABCG36, ABF2 and PYL4) were identified to respond to drought stress based on WGCNA and BLAST analysis using DroughtDB. These six DEGs were annotated to play roles in the ABA-dependent signaling pathway. Sixteen RNA sequencing results involving eight genes and similar expression patterns (12/16) were validated using quantitative real-time PCR. The biochemical and molecular mechanisms underlying the regulation of drought responses by ABA and flavonoids in sea buckthorn were clarified. In this study, gene co-expression networks were constructed, and the results suggested that the mutual regulation of ABA and flavonoid signaling contributed to the difference in drought resistance between the different sea buckthorn subspecies.


Sign in / Sign up

Export Citation Format

Share Document