xylem anatomy
Recently Published Documents


TOTAL DOCUMENTS

91
(FIVE YEARS 18)

H-INDEX

20
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Charis K. Ramsing ◽  
David Gramaje ◽  
Sara Mocholí ◽  
Javier Agustí ◽  
Félix Cabello Sáenz de Santa María ◽  
...  

Fungal grapevine trunk diseases (GTDs) are some of the most pressing threats to grape production worldwide. While these diseases are associated with several fungal pathogens, Phaeomoniella chlamydospora and Phaeoacremonium minimum are important contributors to esca and Petri diseases. Recent research has linked grapevine xylem diameter with tolerance to Pa. chlamydospora in commercial rootstocks. In this study, we screen over 25 rootstocks for xylem characteristics and tolerance to both Pa. chlamydospora and Pm. minimum. Tolerance was measured by fungal incidence and DNA concentration (quantified via qPCR), while histological analyses were used to measure xylem characteristics, including xylem vessels diameter, density, and the proportion of the stem surface area covered by xylem vessels. Rootstocks were grouped into different classes based on xylem characteristics to assess the potential association between vasculature traits and pathogen tolerance. Our results revealed significant differences in all the analyzed xylem traits, and also in DNA concentration for both pathogens among the tested rootstocks. They corroborate the link between xylem vessels diameter and tolerance to Pa. chlamydospora. In Pm. minimum, the rootstocks with the widest xylem diameter proved the most susceptible. This relationship between vasculature development and pathogen tolerance has the potential to inform both cultivar choice and future rootstock breeding to reduce the detrimental impact of GTDs worldwide.


2021 ◽  
Author(s):  
Jose Carlos Herrera ◽  
Tadeja Savi ◽  
Joseph Mattocks ◽  
Federica De Berardinis ◽  
Susanne Scheffknecht ◽  
...  
Keyword(s):  

Author(s):  
Nuengsap Thangthong ◽  
Sanun Jogloy ◽  
Nuntawoot Jongrungklang ◽  
Craig K. Kvien ◽  
Ian C. Dodd ◽  
...  

2021 ◽  
Author(s):  
Timo Pampuch ◽  
Mario Trouillier ◽  
Alba Anadon-Rosell ◽  
Jelena Lange ◽  
Martin Wilmking

<p>Treeline ecosystems are of great scientific interest to study the direct and indirect influence of limiting environmental conditions on tree growth. However, tree growth is complex and multidimensional, and its responses to the environment depend on a large number of abiotic and biotic factors and their interactions.</p><p>In this study, we analyze the growth and xylem anatomy of white spruce trees (<em>Picea glauca</em> [Moench] Voss) from three treelines in Alaska (one warm and drought-limited, and two cold and temperature-limited treelines). We hypothesized (1) no difference between the treelines regarding the relationship between tree DBH and height, yet in general (2) faster growing trees at the warmer site. Additionally, we expected to find differences in xylem anatomical traits with trees from the drought-limited site having adapted to drought conditions by (3) forming smaller lumen diameter due to water deficit but (4) a higher xylem anatomical density due to higher temperatures and a longer vegetation period.</p><p>Regarding growth in height and diameter, trees at the drought-limited treeline grew relatively (1) taller and (2) faster compared to trees at the temperature-limited treelines. Raw xylem anatomical measurements showed (3) smaller lumen diameters and (4) higher density in trees at the drought-limited treeline. However, using linear mixed-effect models, we found that (i) traits related to water transport like lumen diameter were not significantly correlated with the actual amount of precipitation during the vegetation period but with tree height. We also found that (ii) traits related to mechanical support like density were mainly positively influenced by the mean temperature during the vegetation period.</p><p>The differences in lumen diameter found in the raw data can be explained by differences in the growth rates of the trees, since lumen diameter at the lower part of the tree stem needs to increase over time with increasing tree height. The greater wood density at the drought-limited treeline is probably caused by the higher temperature that leads to more biomass production, and potentially longer vegetation periods.</p><p>Our study shows that xylem anatomical traits in white spruce can be directly and indirectly controlled by environmental conditions. While lumen diameter is not directly influenced by environmental conditions but indirectly through tree height, other traits like anatomical density show a direct correlation with environmental conditions. Our results highlight the importance of approaching tree growth in a multidimensional way and considering direct and indirect effects of environmental forcing.</p>


Trees ◽  
2021 ◽  
Author(s):  
Jorma Zimmermann ◽  
Roman M. Link ◽  
Markus Hauck ◽  
Christoph Leuschner ◽  
Bernhard Schuldt

Abstract Key message By combining dendrochronological time-series analysis with radial vessel features, we show that the reconstruction of hydraulic properties improves our understanding of tree species’ acclimation potential to climate change. Abstract The vascular architecture plays a crucial role in the productivity and drought tolerance of broadleaf trees, but it is not yet fully understood how the hydraulic system is acclimating to a warmer and drier climate. Because vessel features may record temporal and spatial variability in climatic signals of the past better than tree-ring width, we combined dendrochronological time-series analysis with the calculation of stem hydraulic properties derived from radial vessel features. We aimed to reconstruct the development and sensitivity of the hydraulic system over six decades and to identify climatic control of xylem anatomy for five co-existing broad-leaved diffuse- and ring-porous tree species (genera Acer, Fagus, Fraxinus and Quercus) across three sites covering a precipitation gradient from 548 to 793 mm. We observed a significant influence of the climatic water balance (CWB) on the vessel features of all species, but the time lag, magnitude and direction of the response was highly species-specific. All diffuse-porous species suffered a decline in vessel diameter in dry years, and increase in vessel density in dry years and the year following. However, F. sylvatica was the only species with a significant long-term change in anatomical traits and a significant reduction in potential hydraulic conductivity (Kp) after dry winters and in dry summers, accompanied with the largest long-term decline in tree-ring width and the largest growth reduction in and after years with a more negative CWB. In contrast, the comparison across the precipitation gradient did not reveal any significant vessel-climate relationships. Our results revealed considerable plasticity in the hydraulic system especially of F. sylvatica, but also evidence of the drought-sensitivity of this species in accordance with earlier dendroecological and physiological studies. We conclude that the long-term reconstruction of hydraulic properties can add substantially to the understanding of the acclimation potential of different tree species to climate change.


2021 ◽  
Author(s):  
Valentina Buttò ◽  
Philippe Rozenberg ◽  
Annie Deslauriers ◽  
Sergio Rossi ◽  
Hubert Morin

2021 ◽  
Vol 45 (4) ◽  
pp. 394-403
Author(s):  
Ming-Yuan NI ◽  
Amy Ny Aina ARITSARA ◽  
Yong-Qiang WANG ◽  
Dong-Liu HUANG ◽  
Wei XIANG ◽  
...  

Author(s):  
Juan A Martín ◽  
Alejandro Solla ◽  
Tomasz Oszako ◽  
Luis Gil

Abstract Populations of Ulmus minor in Europe were severely damaged by Dutch elm disease (DED) pandemics. However, elm breeding programmes have permitted selection of resistant elm varieties currently used for reforestation. In restored elm forests, resistant (R) and susceptible (S) trees interbreed, but little is known about resistance in their offspring. In this work, growth, DED resistance and xylem anatomy in the offspring of two resistant U. minor trees (R1 and R2) were studied. To verify whether transmission of traits in offspring is determined by maternal or paternal trees, a complete randomized plot was established with clonal material from controlled crosses (R1 × S and R2 × S) and parent trees (R1, R2 and S). Trees were inoculated with O. novo-ulmi firstly at age 4 years and again at 5 years. Growth, susceptibility to DED and vessel size in offspring were closer to the traits of maternal than of paternal trees. This association disappeared after the second inoculation when symptoms increased. The more resistant trees in R1 × S and R2 × S had wide and narrow earlywood vessels, respectively, suggesting that water-conducting strategies and resistance mechanisms vary in offspring. Tylosis formation was related to resistance only in R2 × S offspring, possibly due to the narrow earlywood vessles of trees. Latewood vessels were normally narrower in the more resistant trees. This study sheds light on anatomical resistance mechanisms of elms against DED: (1) offspring exhibit high variability in responses among individuals, (2) narrow earlywood vessels are not a prerequisite for DED resistance and (3) barrier zones are not fully associated with tree resistance in offspring.


2020 ◽  
Author(s):  
Raiza Castillo-Argaez ◽  
Aime Vazquez ◽  
Joshua L Konkol ◽  
Ana I Vargas ◽  
Randy C Ploetz ◽  
...  

Abstract Laurel wilt, a lethal vascular wilt disease caused by the fungus Raffaelea lauricola, affects several tree species in the Lauraceae, including three Persea species. The susceptibility to laurel wilt of two forest tree species native to the southern United States, Persea borbonia and Persea palustris, and avocado, Persea americana cv Waldin, was examined and related to tree physiology and xylem anatomy. Net CO2 assimilation (A), stomatal conductance (gs), leaf chlorophyll index (LCI), leaf chlorophyll fluorescence (Fv/Fm), xylem sap flow, theoretical stem hydraulic conductivity (Kh) and xylem vessel anatomy were assessed in trees of each species that were inoculated with R. lauricola and in control trees. Laurel wilt caused a reduction in A, gs, LCI, Fv/Fm, and blockage of xylem vessels by tyloses formation that negatively impacted Kh, and sap flow in all Persea species. However, disease susceptibility as indicated by canopy wilting and sapwood discoloration was less pronounced in P. americana cv Waldin than in the two forest species. Xylem vessel diameter was significantly smaller in P. borbonia and P. palustris than in P. americana cv Waldin. Differences in laurel wilt susceptibility among species appears to be influenced by physiological and anatomical tree responses.


Sign in / Sign up

Export Citation Format

Share Document