Characterization of the triple-component linoleic acid isomerase inLactobacillus plantarumZS2058 by genetic manipulation

2017 ◽  
Vol 123 (5) ◽  
pp. 1263-1273 ◽  
Author(s):  
B. Yang ◽  
H. Qi ◽  
Z. Gu ◽  
H. Zhang ◽  
W. Chen ◽  
...  

2007 ◽  
Vol 40 (4) ◽  
pp. 831-839 ◽  
Author(s):  
Susan S. Peng ◽  
Ming-De Deng ◽  
Alan D. Grund ◽  
Reinhardt A. Rosson


2011 ◽  
Vol 34 (6) ◽  
pp. 757-765 ◽  
Author(s):  
Qinghong You ◽  
Xiulian Yin ◽  
Xu Gu ◽  
Hong Xu ◽  
Li Sang




mBio ◽  
2018 ◽  
Vol 9 (5) ◽  
Author(s):  
Travis J. Wiles ◽  
Elena S. Wall ◽  
Brandon H. Schlomann ◽  
Edouard A. Hay ◽  
Raghuveer Parthasarathy ◽  
...  

ABSTRACTCorrelating the presence of bacteria and the genes they carry with aspects of plant and animal biology is rapidly outpacing the functional characterization of naturally occurring symbioses. A major barrier to mechanistic studies is the lack of tools for the efficient genetic manipulation of wild and diverse bacterial isolates. To address the need for improved molecular tools, we used a collection of proteobacterial isolates native to the zebrafish intestinal microbiota as a testbed to construct a series of modernized vectors that expedite genetic knock-in and knockout procedures across lineages. The innovations that we introduce enhance the flexibility of conventional genetic techniques, making it easier to manipulate many different bacterial isolates with a single set of tools. We developed alternative strategies for domestication-free conjugation, designed plasmids with customizable features, and streamlined allelic exchange using visual markers of homologous recombination. We demonstrate the potential of these tools through a comparative study of bacterial behavior within the zebrafish intestine. Live imaging of fluorescently tagged isolates revealed a spectrum of distinct population structures that differ in their biogeography and dominant growth mode (i.e., planktonic versus aggregated). Most striking, we observed divergent genotype-phenotype relationships: several isolates that are predicted by genomic analysis andin vitroassays to be capable of flagellar motility do not display this trait within living hosts. Together, the tools generated in this work provide a new resource for the functional characterization of wild and diverse bacterial lineages that will help speed the research pipeline from sequencing-based correlations to mechanistic underpinnings.IMPORTANCEA great challenge in microbiota research is the immense diversity of symbiotic bacteria with the capacity to impact the lives of plants and animals. Moving beyond correlative DNA sequencing-based studies to define the cellular and molecular mechanisms by which symbiotic bacteria influence the biology of their hosts is stalling because genetic manipulation of new and uncharacterized bacterial isolates remains slow and difficult with current genetic tools. Moreover, developing tools de novo is an arduous and time-consuming task and thus represents a significant barrier to progress. To address this problem, we developed a suite of engineering vectors that streamline conventional genetic techniques by improving postconjugation counterselection, modularity, and allelic exchange. Our modernized tools and step-by-step protocols will empower researchers to investigate the inner workings of both established and newly emerging models of bacterial symbiosis.



Genome ◽  
2015 ◽  
Vol 58 (8) ◽  
pp. 375-383 ◽  
Author(s):  
Yun Wang ◽  
Xingguo Zhang ◽  
Yongli Zhao ◽  
C.S. Prakash ◽  
Guohao He ◽  
...  

The FAD2 gene family is functionally responsible for the conversion of oleic acid to linoleic acid in oilseed plants. Multiple members of the FAD gene are known to occur in several oilseed species. In this study, six novel full-length cDNA sequences (named as AhFAD2-1, -2, -3, -4, -5, and -6) were identified in peanut (Arachis hypogaea L.), an analysis of which revealed open reading frames of 379, 383, 394, or 442 amino acids. Sequence comparisons showed that AhFAD2-1 and AhFAD2-2 shared 76% identity, while AhFAD2-2, -3, and -4 displayed highly significant homology. There was only 27% identity overlap between the microsomal ω-6 fatty acid desaturase and the chloroplast ω-6 fatty acid desaturase encoded by AhFAD2-1, -2, -3, -4, and AhFAD2-5, -6, respectively. The phylogeny tree of FAD2 transcripts showed five major groups, and AhFAD2-1 was clearly separated from other groups. Analysis of AhFAD2-1 and AhFAD2-2 transcript distribution in different peanut tissues showed that the AhFAD2-1 gene showed upward of a 70-fold increase in expression of fatty acid than the AhFAD2-2 gene in peanut developing seeds, while the AhFAD2-2 gene expressed most abundantly in peanut flowers. Because the AhFAD2-1 gene played a major role in the conversion of oleic to linoleic acid during seed development, the identification of this novel member in this study would facilitate the further genetic manipulation of peanut oil quality. The implications of overall results also suggest that there may be more candidate genes controlling levels of oleate acid in developing seeds. Results also may be due to the presence of complex gene networks controlling the fluxes between the endoplasmic reticulum and the chloroplast within the peanut cells.





2018 ◽  
Vol 80 ◽  
pp. 149-159 ◽  
Author(s):  
Emmanuel Duhoranimana ◽  
Jingyang Yu ◽  
Odile Mukeshimana ◽  
Ildephonse Habinshuti ◽  
Eric Karangwa ◽  
...  


Data in Brief ◽  
2020 ◽  
Vol 28 ◽  
pp. 105037 ◽  
Author(s):  
Mauricio Mastrogiovanni ◽  
Andres Trostchansky ◽  
Homero Rubbo


2012 ◽  
Vol 7 (12) ◽  
pp. 1934578X1200701 ◽  
Author(s):  
Rafaela Ferreira Oliveira ◽  
Celso Amorim Camara ◽  
Maria de Fátima Agra ◽  
Tania Maria Sarmento Silva

Investigation of the green fruits of Clusia paralicola (Clusiaceae) led to the isolation and characterization of two 3,8″-biflavonoids, 2R, 3S, 2″R, 3″R-GB1-7″- O-β-glucoside (1) and 2R, 3S, 2″R, 3,8″-binaringenin-7″-O-β-glucoside (2), together with four known compounds: β-sitosterol, stigmasterol, β-amyrin, and epicatechin. The structures were established from the IR, LC-ESI-MS and NMR spectral data, including 2D-NMR experiments. The absolute configurations of 1 and 2 were determined by CD spectra. The total extract and the biflavonoids demonstrated significant antioxidant activity in DPPH, ABTS, and β-carotene/linoleic acid tests.



The fundamental importance of dinitrogen fixation for world agriculture, in relation to projected energy supplies, population pressure and food requirements over the next decades, obliges scientists to reconsider ways of exploiting this biological process. Genetic manipulation offers several options in principle. Existing symbiotic systems such as the legumes and seemingly inefficient systems such as the grass associations could be improved; new symbioses could be developed by nif gene transfer to rhizosphere commensals or by somatic hybridization of appropriate plants. A major advance would be to render plants independent of microbes by manipulation of expressable nif into the plant genome. This goal is discussed. It requires the complete genetic and physical characterization of nif in particular its regulation, and an understanding of the physiological background within which nif can be expressed, as well as the ability to fuse nif to alien genetic systems. Substantial progress in these directions has been made by using the n if genes of Klebsiella pneumoniae this progress is reviewed. Strategies for the further manipulation of nif towards regulated expression in the plant genome are considered.



Sign in / Sign up

Export Citation Format

Share Document