scholarly journals Mesenchymal stem cell–secreted extracellular vesicles carrying TGF‐β1 up‐regulate miR‐132 and promote mouse M2 macrophage polarization

2020 ◽  
Vol 24 (21) ◽  
pp. 12750-12764
Author(s):  
Yongqi Wang ◽  
Biao Han ◽  
Yingbin Wang ◽  
Chunai Wang ◽  
Hong Zhang ◽  
...  
2020 ◽  
Vol 75 ◽  
pp. 109738
Author(s):  
Jun Chen ◽  
Ze-Bing Huang ◽  
Cheng-Jin Liao ◽  
Xing-Wang Hu ◽  
Sha-Ling Li ◽  
...  

2017 ◽  
Vol 6 (3) ◽  
pp. 1018-1028 ◽  
Author(s):  
Claudia Lo Sicco ◽  
Daniele Reverberi ◽  
Carolina Balbi ◽  
Valentina Ulivi ◽  
Elisa Principi ◽  
...  

2020 ◽  
Author(s):  
hangjie ying ◽  
min Fang ◽  
Qing Qing Hang ◽  
Ya mei Chen ◽  
Xu Qian ◽  
...  

Abstract Background:Radiation-induced lung injury (RILI) mainly contributes to the complications of thoracic radiotherapy. RILI can be divided into early-stage radiation pneumonia (RP) and late-stage radiation-induced lung fibrosis (RILF). Once RILF occurs, patients will eventually develop irreversible respiratory failure; thus, a new treatment strategy to prevent RILI is urgently needed. This study explored the therapeutic effect of pirfenidone (PFD), a Food and Drug Administration (FDA)-approved drug for idiopathic pulmonary fibrosis (IPF) treatment, and its mechanism in the treatment of RILF. Methods:A series of in vitro and in vivo assays were performed to explore the role and mechanism of PFD in the prevention and treatment of RILF. Results:Collagen deposition and fibrosis in the lung were reversed by PFD treatment, which was associated with reduced M2 macrophage infiltration and inhibition of the transforming growth factor-β1(TGF-β1) /drosophila mothers against decapentaplegic 3 (Smad3) signaling pathway. Moreover, PFD treatment decreased the radiation-induced expression of TGF-β1 and phosphorylation of Smad3 in alveolar epithelial cells (AECs) and vascular endothelial cells (VECs). Furthermore, IL-4- and IL13-induced M2 macrophage polarization was suppressed by PFD treatment in vitro, resulting in reductions in the release of arginase-1(ARG-1), chitinase 3-like 3 (YM-1) and TGF-β1. Notably, the PFD-induced inhibitory effects on M2 macrophage polarization were associated with downregulation of nuclear factor kappa-B (NF-κB) p50 activity. Additionally, PFD could significantly inhibit ionizing radiation-induced chemokine secretion in MLE-12 cells and consequently impair the migration of RAW264.7 cells. PFD could also eliminate TGF-β1 from M2 macrophages by attenuating the activation of TGF-β1/Smad3. Conclusion:PFD is a potential therapeutic agent to ameliorate fibrosis in RILF by reducing M2 macrophage infiltration and inhibiting the activation of TGF-β1/Smad3.


2019 ◽  
Author(s):  
Young-Jin Youn ◽  
Sanjeeb Shrestha ◽  
Jun-Kyu Kim ◽  
Yu-Bin Lee ◽  
Jee Hyun Lee ◽  
...  

SUMMARYExtracellular vesicles (EVs) are membrane-derived vesicles that mediate intercellular communications. Neutrophils produce different subtypes of EVs during inflammatory responses. Neutrophil-derived trails (NDTRs) are generated by neutrophils migrating toward inflammatory foci, whereas neutrophil-derived microvesicles (NDMVs) are thought to be generated by neutrophils that have arrived at the inflammatory foci. However, the physical and functional characteristics of neutrophil-derived EVs are incompletely understood. In this study, we investigated the similarities and differences between neutrophil-derived EV subtypes. Neutrophil-derived EVs shared similar characteristics regarding stimulators, generation mechanisms, and surface marker expression. Both neutrophil-derived EV subtypes exhibited similar functions, such as direct bactericidal activity and induction of monocyte chemotaxis via MCP-1. However, NDTR generation was dependent on the integrin signaling, while NDMV generation was dependent on the PI3K pathway. The CD16 expression level differentiated the neutrophil-derived EV subtypes. Interestingly, both subtypes showed different patterns of miRNA expression and were easily phagocytosed by monocytes. NDTRs induced M1 macrophage polarization, whereas NDMVs induced M2 macrophage polarization. Moreover, NDTRs but not NDMVs exerted protective effects against sepsis-induced lethality in a murine sepsis model and pathological changes in a murine chronic colitis model. These results suggest a new insight into neutrophil-derived EV subtypes: proinflammatory NDTRs and anti-inflammatory NDMVs.Key pointsNeutrophil-derived trails are proinflammatory extracellular vesicles that induce M1 macrophage polarization and protect against inflammationNeutrophil-derived microvesicles are anti-inflammatory extracellular vesicles that induce M2 macrophage polarization


Sign in / Sign up

Export Citation Format

Share Document