scholarly journals Role of gut microbiota, bile acids and their cross-talk in the effects of bariatric surgery on obesity and type 2 diabetes

2017 ◽  
Vol 9 (1) ◽  
pp. 13-20 ◽  
Author(s):  
Haijun Liu ◽  
Cheng Hu ◽  
Xueli Zhang ◽  
Weiping Jia
2018 ◽  
Vol 19 (12) ◽  
pp. 3744 ◽  
Author(s):  
Paulina Samczuk ◽  
Hady Hady ◽  
Edyta Adamska-Patruno ◽  
Anna Citko ◽  
Jacek Dadan ◽  
...  

Different kinds of gastrointestinal tract modulations known as “bariatric surgery” are actually the most effective treatment for obesity and associated co-morbidities, such as type 2 diabetes (T2DM). The potential causes of those effects have yet to be explained. In our study, we focused on molecular changes evoked by laparoscopic sleeve gastrectomy leading to T2DM remission. Two complementary metabolomics techniques, namely, liquid chromatography coupled with mass spectrometry (LC-MS) and gas chromatography mass spectrometry (GC-MS), were used to study those effects in a group of 20 obese patients with T2DM selected from a cohort of 372 obese individuals who underwent bariatric surgery and did not receive anti-diabetic treatment afterward. Modified levels of carnitines, lipids, amino acids (including BCAA) and α- and β-hydroxybutyric acids were detected. Presented alterations suggest a major role of mitochondria activity in T2DM remission process. Moreover, some of the observed metabolites suggest that changes in gut microbiota composition may also correlate with the tempo of diabetes recovery. Additional analyses confirmed a relationship between biochemical and clinical parameters and the aforementioned metabolites, thereby, highlighting a role of mitochondria and microbes. Our data suggests that there is a previously undescribed relationship between mitochondria and gut microbiota, which changes after the bariatric surgery. More investigations are needed to confirm and explore the observed findings.


Gut Pathogens ◽  
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
A. L. Cunningham ◽  
J. W. Stephens ◽  
D. A. Harris

AbstractA strong and expanding evidence base supports the influence of gut microbiota in human metabolism. Altered glucose homeostasis is associated with altered gut microbiota, and is clearly associated with the development of type 2 diabetes mellitus (T2DM) and associated complications. Understanding the causal association between gut microbiota and metabolic risk has the potential role of identifying susceptible individuals to allow early targeted intervention.


2018 ◽  
Vol 237 (1) ◽  
pp. R1-R17 ◽  
Author(s):  
Martin Haluzík ◽  
Helena Kratochvílová ◽  
Denisa Haluzíková ◽  
Miloš Mráz

Increasing worldwide prevalence of type 2 diabetes mellitus and its accompanying pathologies such as obesity, arterial hypertension and dyslipidemia represents one of the most important challenges of current medicine. Despite intensive efforts, high percentage of patients with type 2 diabetes does not achieve treatment goals and struggle with increasing body weight and poor glucose control. While novel classes of antidiabetic medications such as incretin-based therapies and gliflozins have some favorable characteristics compared to older antidiabetics, the only therapeutic option shown to substantially modify the progression of diabetes or to achieve its remission is bariatric surgery. Its efficacy in the treatment of diabetes is well established, but the exact underlying modes of action are still only partially described. They include restriction of food amount, enhanced passage of chymus into distal part of small intestine with subsequent modification of gastrointestinal hormones and bile acids secretion, neural mechanisms, changes in gut microbiota and many other possible mechanisms underscoring the importance of the gut in the regulation of glucose metabolism. In addition to bariatric surgery, less-invasive endoscopic methods based on the principles of bariatric surgery were introduced and showed promising results. This review highlights the role of the intestine in the regulation of glucose homeostasis focusing on the mechanisms of action of bariatric and especially endoscopic methods of the treatment of diabetes. A better understanding of these mechanisms may lead to less invasive endoscopic treatments of diabetes and obesity that may complement and widen current therapeutic options.


2015 ◽  
Vol 172 (4) ◽  
pp. R167-R177 ◽  
Author(s):  
Kristine H Allin ◽  
Trine Nielsen ◽  
Oluf Pedersen

Perturbations of the composition and function of the gut microbiota have been associated with metabolic disorders including obesity, insulin resistance and type 2 diabetes. Studies on mice have demonstrated several underlying mechanisms including host signalling through bacterial lipopolysaccharides derived from the outer membranes of Gram-negative bacteria, bacterial fermentation of dietary fibres to short-chain fatty acids and bacterial modulation of bile acids. On top of this, an increased permeability of the intestinal epithelium may lead to increased absorption of macromolecules from the intestinal content resulting in systemic immune responses, low-grade inflammation and altered signalling pathways influencing lipid and glucose metabolism. While mechanistic studies on mice collectively support a causal role of the gut microbiota in metabolic diseases, the majority of studies in humans are correlative of nature and thus hinder causal inferences. Importantly, several factors known to influence the risk of type 2 diabetes, e.g. diet and age, have also been linked to alterations in the gut microbiota complicating the interpretation of correlative studies. However, based upon the available evidence, it is hypothesised that the gut microbiota may mediate or modulate the influence of lifestyle factors triggering development of type 2 diabetes. Thus, the aim of this review is to critically discuss the potential role of the gut microbiota in the pathophysiology and pathogenesis of type 2 diabetes.


Sign in / Sign up

Export Citation Format

Share Document