scholarly journals Protein kinase C iota facilitates insulin‐induced glucose transport by phosphorylation of soluble nSF attachment protein receptor regulator (SNARE) double C2 domain protein b

2018 ◽  
Vol 10 (3) ◽  
pp. 591-601
Author(s):  
Ryuta Nomiyama ◽  
Masahiro Emoto ◽  
Naofumi Fukuda ◽  
Kumiko Matsui ◽  
Manabu Kondo ◽  
...  
2008 ◽  
Vol 28 (15) ◽  
pp. 4719-4733 ◽  
Author(s):  
Carole A. Farah ◽  
Ikue Nagakura ◽  
Daniel Weatherill ◽  
Xiaotang Fan ◽  
Wayne S. Sossin

ABSTRACT In Aplysia californica, the serotonin-mediated translocation of protein kinase C (PKC) Apl II to neuronal membranes is important for synaptic plasticity. The orthologue of PKC Apl II, PKCε, has been reported to require phosphatidic acid (PA) in conjunction with diacylglycerol (DAG) for translocation. We find that PKC Apl II can be synergistically translocated to membranes by the combination of DAG and PA. We identify a mutation in the C1b domain (arginine 273 to histidine; PKC Apl II-R273H) that removes the effects of exogenous PA. In Aplysia neurons, the inhibition of endogenous PA production by 1-butanol inhibited the physiological translocation of PKC Apl II by serotonin in the cell body and at the synapse but not the translocation of PKC Apl II-R273H. The translocation of PKC Apl II-R273H in the absence of PA was explained by two additional effects of this mutation: (i) the mutation removed C2 domain-mediated inhibition, and (ii) the mutation decreased the concentration of DAG required for PKC Apl II translocation. We present a model in which, under physiological conditions, PA is important to activate the novel PKC Apl II both by synergizing with DAG and removing C2 domain-mediated inhibition.


2019 ◽  
Vol 75 (a1) ◽  
pp. a52-a52
Author(s):  
Nithya Baburajendran ◽  
Jacek Kwiatkowski ◽  
Boping Liu ◽  
Doris Hui Ying Tee ◽  
Thomas H. Keller ◽  
...  

2015 ◽  
Vol 35 (10) ◽  
pp. 1727-1740 ◽  
Author(s):  
Jianli Gong ◽  
Yongneng Yao ◽  
Pingbo Zhang ◽  
Barath Udayasuryan ◽  
Elena V. Komissarova ◽  
...  

The diverse roles of protein kinase C-δ (PKCδ) in cellular growth, survival, and injury have been attributed to stimulus-specific differences in PKCδ signaling responses. PKCδ exerts membrane-delimited actions in cells activated by agonists that stimulate phosphoinositide hydrolysis. PKCδ is released from membranes as a Tyr313-phosphorylated enzyme that displays a high level of lipid-independent activity and altered substrate specificity during oxidative stress. This study identifies an interaction between PKCδ's Tyr313-phosphorylated hinge region and its phosphotyrosine-binding C2 domain that controls PKCδ's enzymology indirectly by decreasing phosphorylation in the kinase domain ATP-positioning loop at Ser359. We show that wild-type (WT) PKCδ displays a strong preference for substrates with serine as the phosphoacceptor residue at the active site when it harbors phosphomimetic or bulky substitutions at Ser359.In contrast, PKCδ-S359A displays lipid-independent activity toward substrates with either a serine or threonine as the phosphoacceptor residue. Additional studies in cardiomyocytes show that oxidative stress decreases Ser359phosphorylation on native PKCδ and that PKCδ-S359A overexpression increases basal levels of phosphorylation on substrates with both phosphoacceptor site serine and threonine residues. Collectively, these studies identify a C2 domain-pTyr313docking interaction that controls ATP-positioning loop phosphorylation as a novel, dynamically regulated, and physiologically relevant structural determinant of PKCδ catalytic activity.


2006 ◽  
Vol 349 (4) ◽  
pp. 1182-1189 ◽  
Author(s):  
Dene R. Littler ◽  
John R. Walker ◽  
Yi-Min She ◽  
Patrick J. Finerty ◽  
Elena M. Newman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document