scholarly journals Hybridization and transgressive exploration of colour pattern and wing morphology in Heliconius butterflies

2020 ◽  
Vol 33 (7) ◽  
pp. 942-956
Author(s):  
Claire Mérot ◽  
Vincent Debat ◽  
Yann Le Poul ◽  
Richard M. Merrill ◽  
Russell E. Naisbit ◽  
...  
PLoS Biology ◽  
2006 ◽  
Vol 4 (10) ◽  
pp. e303 ◽  
Author(s):  
Mathieu Joron ◽  
Riccardo Papa ◽  
Margarita Beltrán ◽  
Nicola Chamberlain ◽  
Jesús Mavárez ◽  
...  

2008 ◽  
Vol 364 (1516) ◽  
pp. 519-527 ◽  
Author(s):  
Hannah M Rowland

Of the many visual characteristics of animals, countershading (darker pigmentation on those surfaces exposed to the most lighting) is one of the most common, and paradoxically one of the least well understood. Countershading has been hypothesized to reduce the detectability of prey to visually hunting predators, and while the function of a countershaded colour pattern was proposed over 100 years ago, the field has progressed slowly; convincing evidence for the protective effects of countershading has only recently emerged. Several mechanisms have been invoked for the concealing function of countershading and are discussed in this review, but the actual mechanisms by which countershading functions to reduce attacks by predators lack firm empirical testing. While there is some subjective evidence that countershaded animals match the background on which they rest, no quantitative measure of background matching has been published for countershaded animals; I now present the first such results. Most studies also fail to consider plausible alternative explanations for the colour pattern, such as protection from UV or abrasion, and thermoregulation. This paper examines the evidence to support each of these possible explanations for countershading and discusses the need for future empirical work.


2008 ◽  
Vol 29 (2) ◽  
pp. 149-160 ◽  
Author(s):  
Otavio Augusto Vuolo Marques ◽  
Ronaldo Fernandes ◽  
Roberta Richard Pinto

Abstract The morphometry and diet of two sympatric species of Chironius (C. flavolineatus and C. quadricarinatus) from Brazilian Cerrado are described. The two snake species differ in external morphology, as Chironius flavolineatus was the largest species (body, tail and eyes) whereas C. quadricarinatus the heaviest. Each species also showed marked sexual size dimorphism. In terms of dietary ecology, both species feed exclusively on frogs with a heavy preference for hylids and may have tendency to eat small items, as noticed in other colubrine species. These two snake species showed a brownish colour pattern and exhibited no ontogenetic variation, suggesting that juveniles and adults use similar substrates. Chironius flavolineatus and C. quadricarinatus present a semi-arboreal habit, with active foraging behaviour, feeding in the ground most of time. Chironius flavolineatus uses higher vegetation for resting and, based on morphological results, seems to be more arboreal than C. quadricarinatus.


2013 ◽  
Vol 280 (1757) ◽  
pp. 20122730 ◽  
Author(s):  
Jennifer L. Kelley ◽  
John L. Fitzpatrick ◽  
Sami Merilaita
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rachel Paul ◽  
Guillaume Giraud ◽  
Katrin Domsch ◽  
Marilyne Duffraisse ◽  
Frédéric Marmigère ◽  
...  

AbstractFlying insects have invaded all the aerial space on Earth and this astonishing radiation could not have been possible without a remarkable morphological diversification of their flight appendages. Here, we show that characteristic spatial expression profiles and levels of the Hox genes Antennapedia (Antp) and Ultrabithorax (Ubx) underlie the formation of two different flight organs in the fruit fly Drosophila melanogaster. We further demonstrate that flight appendage morphology is dependent on specific Hox doses. Interestingly, we find that wing morphology from evolutionary distant four-winged insect species is also associated with a differential expression of Antp and Ubx. We propose that variation in the spatial expression profile and dosage of Hox proteins is a major determinant of flight appendage diversification in Drosophila and possibly in other insect species during evolution.


Author(s):  
Danika L. Bannasch ◽  
Christopher B. Kaelin ◽  
Anna Letko ◽  
Robert Loechel ◽  
Petra Hug ◽  
...  

AbstractDistinctive colour patterns in dogs are an integral component of canine diversity. Colour pattern differences are thought to have arisen from mutation and artificial selection during and after domestication from wolves but important gaps remain in understanding how these patterns evolved and are genetically controlled. In other mammals, variation at the ASIP gene controls both the temporal and spatial distribution of yellow and black pigments. Here, we identify independent regulatory modules for ventral and hair cycle ASIP expression, and we characterize their action and evolutionary origin. Structural variants define multiple alleles for each regulatory module and are combined in different ways to explain five distinctive dog colour patterns. Phylogenetic analysis reveals that the haplotype combination for one of these patterns is shared with Arctic white wolves and that its hair cycle-specific module probably originated from an extinct canid that diverged from grey wolves more than 2 million years ago. Natural selection for a lighter coat during the Pleistocene provided the genetic framework for widespread colour variation in dogs and wolves.


Zootaxa ◽  
2017 ◽  
Vol 4317 (2) ◽  
pp. 379
Author(s):  
MIGUEL VENCES ◽  
JÖRN KÖHLER ◽  
FRANK GLAW

We present molecular evidence for the presence of two species morphologically similar to Spinomantis bertini in Andohahela National Park, south-eastern Madagascar, differing by 5.5−6.3% pairwise DNA sequence divergences in the mitochondrial 16S rRNA gene. One of these was observed at higher elevations of ca. 1650 m above sea level, whereas the other was found at lower elevations of ca. 715 m a.s.l., close to the type locality of S. bertini (Isaka-Ivondro), and in one other location (Andreoky, ca. 1050 a.s.l.). We herein assign these low- to mid-elevation specimens to S. bertini based on their occurrence near the type locality and general agreement in colour pattern with the type specimen of Gephyromantis bertini Guibé, 1947. The high-elevation form is described as Spinomantis beckei sp. nov. based on its molecular divergence and reciprocal monophyly with respect to S. bertini, lower expression of greenish dorsal colour and less distinct frenal stripe. Based on a comparison of published call descriptions for S. bertini and our recordings of S. beckei, we hypothesize that S. bertini has a lower note repetition rate in advertisement calls. Molecular data suggest that the S. bertini species complex is more diverse than previously recognized, with at least two more candidate species identified: S. sp. Ca7 from Ranomafana National Park, and a newly identified candidate species S. sp. Ca12 from Pic d’Ivohibe Special Reserve. 


1977 ◽  
Vol 55 (7) ◽  
pp. 1063-1066 ◽  
Author(s):  
J. D. McPhail

The suggestion that caudal pigment spots in fishes can act as deflection marks is tested experimentally. Fish with artificial caudal spots escape predators more often than the same species without spots, but the difference was not significant (0.1 < p < 0.2). However in fish captured, the place on the body where the fish was seized was shifted posteriorly by the presence of a spot (p < 0.01). Although the results are equivocal, they do suggest a possible selective basis for convergence in colour pattern in small characid fishes.


Sign in / Sign up

Export Citation Format

Share Document