Evaluation of the marginal excess cement and retention force of implant‐supported zirconia crowns with various vent designs under different cement application patterns

Author(s):  
Fangfang Wang ◽  
Shuyuan Li ◽  
Qiang Li ◽  
Heng Dong
Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 315
Author(s):  
Nathália C. Ramos ◽  
Larissa M.M. Alves ◽  
Gabriela F. Ramos ◽  
Marco Antonio Bottino ◽  
Renata M. Melo ◽  
...  

To evaluate the influence of the convergence angle of tooth preparations and abutments height and several surface treatments for zirconia copings through the tensile retention test. 120 crown preparations were made in Nema G10 with the maxillary first molar anatomy. In total, 60 abutments of 5 mm height were divided into two groups of 6° and 20° convergence angles of tooth preparations, and 60 abutments with a convergence angle of tooth preparations of 12° were divided into groups of 4 and 6 mm heights. Three surface treatments used were MDP-primer (10-Methacryloyloxydecyl dihydrogen phosphate), glazing or silica blasting. The abutments were scanned to make zirconia copings (3Y-TZP–Yttria-Stabilized Tetragonal Zirconia Polycrystals, Vita In-Ceram YZ). After cementation, the mechanical cycling (2 × 106 cycles, 3 Hz, 100 N) was performed to aging. After cycling, the copings were tested in tensile (1 kN load cell; 0.5 mm/s speed). Both abutments support base and copings were embedded in acrylic resin with the aid of a device that maintained the long axis perpendicular to the horizontal plane. Data were analyzed with the two-way ANOVA and Tukey test (95%). ANOVA revealed that the convergence angle influenced the tensile retention (p = 0.0232), but the abutments height showed no statistically significant difference (p = 0.086). The MDP-primer and silica blasting showed higher retention forces in the specimens with height variations. For bonded zirconia crowns, the retention force provided by high convergence angle preparation is critical and cannot be improved by surface treatments. For short and long crown preparations, MDP-based Primers or Silica blasting are advisable to aid restoration longevity.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Felix Dähne ◽  
Heike Meißner ◽  
Klaus Böning ◽  
Christin Arnold ◽  
Ralf Gutwald ◽  
...  

Abstract Purpose The aim of the present study was to examine the retention force of monolithic zirconia copings cemented with various temporary cements on implant abutments in vitro. Methods Sixty exercise implants with pre-screwed implant abutments were embedded in resin. Subsequently, 60 CAD/CAM manufactured zirconia copings were divided into three main groups [Harvard Implant Semi-permanent (HAV), implantlink semi Forte (IMP), Temp Bond NE (TBNE)]. The zirconia copings were cemented on the implant abutments and loaded with 35 N. Specimens were stored in distilled water (37 °C) for 24 h. Half of the test specimens of each group were subjected to a thermocycling (TC) process. Retention force was measured in a universal testing machine. Using magnifying glasses, the fracture mode was determined. Statistical analysis was performed applying the Kruskal-Wallis test, the post hoc test according to Dunn-Bonferroni and a chi-square test of independence. Results Without TC, IMP showed the highest retention of the three temporary luting agents (100.5 ± 39.14 N). The measured retention forces of IMP were higher than those of HAV (45.78 ± 15.66 N) and TBNE (61.16 ± 20.19 N). After TC, retention was reduced. IMP showed the greatest retentive strength (21.69 ± 13.61 N, three fail outs). HAV and TBNE showed pull-off forces of similar magnitude (17.38 ± 12.77 N and 16.97 ± 12.36 N, two fail outs). The fracture mode analysis showed different results regarding the tested cements before and after TC (facture type before/after TC): IMP (III+II/III), HAV (I/II) and TBNE (III/III). There were clear differences of the fracture modes regarding the examination before and after TC. Conclusions Within the limits of this study, IMP showed the highest pull-off forces under the chosen test conditions. All three temporary luting agents showed lower retention forces after TC. Retention values in the individual cement classes were very heterogeneous. Easy cement removal in the crown lumen favours the dominance of adhesive cement fractures on the abutment and adhesive/cohesive cement fractures on the abutment with HAV appears advantageous in case of recementation of the superstructure.


2019 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
Mai Mohammed Faek ◽  
Mona hossam ◽  
Rania Amin Shetawy
Keyword(s):  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhenyu Tang ◽  
Xinyi Zhao ◽  
Hui Wang

Abstract Background The present study aimed to quantitate the wear of the highly transparent Yttria-stabilized tetragonal zirconia polycrystals (Y-TZP) ceramic monolithic zirconia crown on the enamel in vivo and discuss the prone position of the wear and the underlying mechanism. Methods A total of 43 patients with 43 posterior teeth were selected for full zirconia crown restoration and examined immediately, at 6 months, and at 1 year after restoration. During the follow-up visit, the fine impression of the patients’ monolithic zirconia crowns, the antagonist teeth, the corresponding contralateral natural teeth, the super plaster cast, and epoxy resin model was ontained. The model of epoxy resin was observed under a stereo microscope, and the microstructure parts were observed under a scanning electron microscope. Results After 1 year, the mean depth and volume of wearing of the monolithic zirconia crown were the smallest (all P < 0.01), while those of the antagonist teeth were significantly larger than those of the natural teeth (P < 0.0001), and no significant difference was found among the natural teeth (P = 0.3473, P = 0.6996). The amount of wear after one year was remarkably higher than that at 6 months (P < 0.0001). The microscopic observation revealed the tendency of wearing of the monolithic zirconia crown on the antagonist teeth at the protruding early contact points. Electron micrographs of tooth scars showed that the wearing mechanism of the monolithic zirconia crown on natural teeth was mainly abrasive and fatigue wear. Conclusions Although the self-wearing is insignificant, the monolithic zirconia crown can cause wear of the antagonist teeth via occlusal or early contact significantly; the amount of wearing is higher than that of natural teeth and increases over time. The wearing mechanism is mainly abrasive and fatigue wear.


2008 ◽  
Vol 61 (3-4) ◽  
pp. 131-134
Author(s):  
Ljiljana Aleksov ◽  
Sasa Stankovic ◽  
Zorica Ajdukovic

Introduction Precise reproduction of anatomical-morphological details of dentures support on working models presupposes adequate application of modern impression materials and casting procedure, as well as minimal dimensional change of these materials. The aim of the study: experimental and clinical research is connected to irreversible hydrocolloids and the objective was to examine the most suitable consistency of the alginate as the impression mass for the purpose of improving retention of complete dentures. Material and methods This research included 35 completely toothless patients, most of who had already had complete dentures, 40-80 years of age and of both sexes. Static adhesion was measured with aery late plates made of adequate corresponding and various models depending on consistency of the irreversible hydrocolloids. Each model was cut into three parts, the cuts obtained were mutually compared, and computerized graphic charts of each section were made. Results The results of the research show that there is a greater retention force in the acrylate plates obtained on models castled on an anatomical impression base taken with irreversible hydrocolloides of solid consistency. Analysis of the results shows such quality of impressed tissues that they are practically slightly displaced by the impressions regardless of the consistency of the material impressed. Conclusion In conclusion it is pointed out that the preparation of irreversible hydrocolloides must be carried out by strictly obeying the powder-water weight ratios. The sections of the models obtained by irreversible hydrocolloides of various consistencies, that is by applying different pressures, point to minimal displacement of tissues and great differences in the retention force in favor of the compressive impression.


2016 ◽  
Vol 697 ◽  
pp. 629-632
Author(s):  
Li Xian Zhang ◽  
Rui Li ◽  
Yu Niu ◽  
Yu Xiao Liu

To explore the effect of thickness on the fracture strength and failure modes of zirconia crowns, four crown models with different thickness (1.2 mm, 1.0 mm, 0.8 mm, 0.6 mm) with the same shape were designed by Dental Designer software in CAD/CAM system. They were manufactured to 40 zirconia crowns by CAM carving machine. The fracture strength and the failure modes of each crown was measured, while porcelain fused to metal (PFM) crowns as control. The average fracture strength of different zirconia crowns were recorded as below: 1308.38 ± 111.38 N (Group 0.6 mm), 1841.60 ± 68.21 N (Group 0.8 mm), 2429.88 ± 315.03 N (Group 1.0 mm), 3068.31 ± 233.88 N (Group 1.2 mm). There was no significant difference between Group 1.0 mm and Group 1.2 mm (P > 0.05), and statistical significance was obtained among every other two groups (P < 0.05). The failure modes of different thickness zirconium crowns are similar. There are more broken pieces from thicker crowns compared to thinner ones. It is concluded that the thickness can influence the fracture strength of zirconia crown. With the increase of the thickness, the fracture strength of the zirconium crowns also increases. We recommend zirconia crowns thicker than or at least 1.0 mm in dental practice.


2021 ◽  
Vol 41 (5) ◽  
pp. 703-710
Author(s):  
Marco Ferrari ◽  
Anna Marucci ◽  
Edoardo Cagidiaco ◽  
Denise Pontoriero ◽  
Massimo Fuzzi

Sign in / Sign up

Export Citation Format

Share Document