Ferulic acid promotes muscle glucose uptake and modulate dysregulated redox balance and metabolic pathways in ferric‐induced pancreatic oxidative injury

Author(s):  
Veronica F. Salau ◽  
Ochuko L. Erukainure ◽  
Neil A. Koorbanally ◽  
Md. Shahidul Islam
Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1047
Author(s):  
Giovanna Di Emidio ◽  
Stefano Falone ◽  
Paolo Giovanni Artini ◽  
Fernanda Amicarelli ◽  
Anna Maria D’Alessandro ◽  
...  

Mitochondria act as hubs of numerous metabolic pathways. Mitochondrial dysfunctions contribute to altering the redox balance and predispose to aging and metabolic alterations. The sirtuin family is composed of seven members and three of them, SIRT3-5, are housed in mitochondria. They catalyze NAD+-dependent deacylation and the ADP-ribosylation of mitochondrial proteins, thereby modulating gene expression and activities of enzymes involved in oxidative metabolism and stress responses. In this context, mitochondrial sirtuins (mtSIRTs) act in synergistic or antagonistic manners to protect from aging and aging-related metabolic abnormalities. In this review, we focus on the role of mtSIRTs in the biological competence of reproductive cells, organs, and embryos. Most studies are focused on SIRT3 in female reproduction, providing evidence that SIRT3 improves the competence of oocytes in humans and animal models. Moreover, SIRT3 protects oocytes, early embryos, and ovaries against stress conditions. The relationship between derangement of SIRT3 signaling and the imbalance of ROS and antioxidant defenses in testes has also been demonstrated. Very little is known about SIRT4 and SIRT5 functions in the reproductive system. The final goal of this work is to understand whether sirtuin-based signaling may be taken into account as potential targets for therapeutic applications in female and male infertility.


2013 ◽  
Vol 32 (19) ◽  
pp. 2589-2602 ◽  
Author(s):  
Hyeonju Yeo ◽  
Costas A Lyssiotis ◽  
Yuqing Zhang ◽  
Haoqiang Ying ◽  
John M Asara ◽  
...  

2019 ◽  
Vol 34 (3) ◽  
pp. 721-732 ◽  
Author(s):  
Ochuko L. Erukainure ◽  
Olajumoke A. Oyebode ◽  
Collins U. Ibeji ◽  
Neil A. Koorbanally ◽  
Md. Shahidul Islam

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Xiaoting Luo ◽  
Rongrong Li ◽  
Liang-Jun Yan

Pancreaticβcells not only use glucose as an energy source, but also sense blood glucose levels for insulin secretion. While pyruvate and NADH metabolic pathways are known to be involved in regulating insulin secretion in response to glucose stimulation, the roles of many other components along the metabolic pathways remain poorly understood. Such is the case for mitochondrial complex I (NADH/ubiquinone oxidoreductase). It is known that normal complex I function is absolutely required for episodic insulin secretion after a meal, but the role of complex I inβcells in the diabetic pancreas remains to be investigated. In this paper, we review the roles of pyruvate, NADH, and complex I in insulin secretion and hypothesize that complex I plays a crucial role in the pathogenesis ofβcell dysfunction in the diabetic pancreas. This hypothesis is based on the establishment that chronic hyperglycemia overloads complex I with NADH leading to enhanced complex I production of reactive oxygen species. As nearly all metabolic pathways are impaired in diabetes, understanding how complex I in theβcells copes with elevated levels of NADH in the diabetic pancreas may provide potential therapeutic strategies for diabetes.


Cancers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 955 ◽  
Author(s):  
Vinee Purohit ◽  
Diane M. Simeone ◽  
Costas A. Lyssiotis

Reactive oxygen species (ROS) are chemically active free radicals produced by partial reduction of oxygen that can activate discrete signaling pathways or disrupt redox homeostasis depending on their concentration. ROS interacts with biomolecules, including DNA, and can cause mutations that can transform normal cells into cancer cells. Furthermore, certain cancer-causing mutations trigger alterations in cellular metabolism that can increase ROS production, resulting in genomic instability, additional DNA mutations, and tumor evolution. To prevent excess ROS-mediated toxicity, cancer-causing mutations concurrently activate pathways that manage this oxidative burden. Hence, an understanding of the metabolic pathways that regulate ROS levels is imperative for devising therapies that target tumor cells. In this review, we summarize the dual role of metabolism as a generator and inhibitor of ROS in cancer and discuss current strategies to target the ROS axis.


1994 ◽  
Vol 37 (2) ◽  
pp. 123-132 ◽  
Author(s):  
B. Falconnier ◽  
C. Lapierre ◽  
L. Lesage-Meessen ◽  
G. Yonnet ◽  
P. Brunerie ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 758
Author(s):  
Kyung-Soo Chun ◽  
Do-Hee Kim ◽  
Young-Joon Surh

Redox homeostasis is not only essential for the maintenance of normal physiological functions, but also plays an important role in the growth, survival, and therapy resistance of cancer cells. Altered redox balance and consequent disruption of redox signaling are implicated in the proliferation and progression of cancer cells and their resistance to chemo- and radiotherapy. The nuclear factor erythroid 2 p45-related factor (Nrf2) is the principal stress-responsive transcription factor that plays a pivotal role in maintaining cellular redox homeostasis. Aberrant Nrf2 overactivation has been observed in many cancerous and transformed cells. Uncontrolled amplification of Nrf2-mediated antioxidant signaling results in reductive stress. Some metabolic pathways altered due to reductive stress have been identified as major contributors to tumorigenesis. This review highlights the multifaceted role of reductive stress in cancer development and progression.


Sign in / Sign up

Export Citation Format

Share Document