The role of central corticotrophin‐releasing factor receptor signalling in plasma glucose maintenance through ghrelin secretion in calorie‐restricted mice

2021 ◽  
Vol 33 (3) ◽  
Author(s):  
Risa Kimura ◽  
Daisuke Kondo ◽  
Shota Takemi ◽  
Miyuki Fujishiro ◽  
Shinji Tsukahara ◽  
...  
Diabetes ◽  
1986 ◽  
Vol 35 (2) ◽  
pp. 186-191 ◽  
Author(s):  
I. Hansen ◽  
R. Firth ◽  
M. Haymond ◽  
P. Cryer ◽  
R. Rizza

Stress ◽  
2005 ◽  
Vol 8 (4) ◽  
pp. 209-219 ◽  
Author(s):  
Anantha Shekhar ◽  
William Truitt ◽  
Donald Rainnie ◽  
Tammy Sajdyk

2017 ◽  
Vol 41 (5) ◽  
pp. S31
Author(s):  
Erik Slade ◽  
Laura Williams ◽  
Jeffrey Gagnon

1993 ◽  
Vol 265 (2) ◽  
pp. E275-E283 ◽  
Author(s):  
M. Kjaer ◽  
K. Engfred ◽  
A. Fernandes ◽  
N. H. Secher ◽  
H. Galbo

To investigate the role of sympathoadrenergic activity on glucose production (Ra) during exercise, eight healthy males bicycled 20 min at 41 +/- 2 and 74 +/- 4% maximal O2 uptake (VO2max; mean +/- SE) either without (control; Co) or with blockade of sympathetic nerve activity to liver and adrenal medulla by local anesthesia of the celiac ganglion (Bl). Epinephrine (Epi) was in some experiments infused during blockade to match (normal Epi) or exceed (high Epi) Epi levels during Co. A constant infusion of somatostatin and glucagon was given before and during exercise. At rest, insulin was infused at a rate maintaining euglycemia. During intense exercise, insulin infusion was halved to mimic physiological conditions. During exercise, Ra increased in Co from 14.4 +/- 1.0 to 27.8 +/- 3.0 mumol.min-1.kg-1 (41% VO2max) and to 42.3 +/- 5.2 (74% VO2max; P < 0.05). At 41% VO2max, plasma glucose decreased, whereas it increased during 74% VO2max. Ra was not influenced by Bl. In high Epi, Ra rose more markedly compared with control (P < 0.05), and plasma glucose did not fall during mild exercise and increased more during intense exercise (P < 0.05). Free fatty acid and glycerol concentrations were always lower during exercise with than without celiac blockade. We conclude that high physiological concentrations of Epi can enhance Ra in exercising humans, but normally Epi is not a major stimulus. The study suggests that neither sympathetic liver nerve activity is a major stimulus for Ra during exercise. The Ra response is enhanced by a decrease in insulin and probably by unknown stimuli.(ABSTRACT TRUNCATED AT 250 WORDS)


2003 ◽  
pp. 403-406 ◽  
Author(s):  
L Briatore ◽  
G Andraghetti ◽  
R Cordera

OBJECTIVE: The independent role of glucose and insulin in ghrelin regulation is still controversial; this is also because in healthy subjects it is difficult to isolate the increase of glucose from that of insulin. The aim of this study was to discriminate the effect of glucose increase alone and early insulin response on plasma ghrelin, comparing ghrelin variation after i.v. glucose between healthy subjects and type 2 diabetic (T2DM) subjects, in whom the early insulin response to i.v. glucose is abolished. METHODS: Plasma glucose, insulin and ghrelin levels were measured 0, 3, 5, 10, 30, 45 and 60 min after a 5 g glucose i.v. bolus in seven healthy control subjects and eight T2DM subjects. RESULTS: There were no significant differences in body mass index, basal insulin and basal ghrelin between T2DM and healthy subjects. Basal glucose levels were higher in T2DM subjects than in controls. After i.v. glucose administration, plasma glucose increased significantly in both groups and the glucose peak was higher in T2DM subjects than in controls (9.67+/-1.25 (s.d.) vs 6.88+/-1.00 mmol/l, P<0.01). Insulin increased rapidly in controls, while in T2DM subjects, plasma insulin did not rise in the first 10 min. After the glucose bolus, plasma ghrelin showed a significant reduction both in controls and in T2DM subjects after 5 min. CONCLUSION: These findings indicate that a low-dose i.v. glucose bolus reduces ghrelin both in controls and in T2DM subjects and therefore that early insulin response does not affect plasma ghrelin.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Menno Vergeer ◽  
Liam R Brunham ◽  
Joris Koetsveld ◽  
Janine K Kruit ◽  
C B Verchere ◽  
...  

Background The ATP Binding Cassette transporter A1 (ABCA1) transports free cholesterol to nascent high-density lipoproteins (HDL) and maintains plasma HDL levels. In mice, ABCA1 is essential in regulating intracellular cholesterol homeostasis and insulin secretion in the β cell. The role of ABCA1 in human glucose metabolism is unclear. Objective and methods To assess the effects of ABCA1 dysfunction on glucose homeostasis in humans , we matched heterozygous carriers of disruptive mutations in ABCA1 and non-carriers for age, gender and BMI and performed oral glucose tolerance tests (OGTT; 9 vs. 8 respectively) and hyperglycemic clamping experiments (6 vs. 6). Results Carriers had lower HDL-C levels than non-carriers (0.58 ± 0.3 vs. 1.46 ± 0.4 mmol/L, p=0.001) but LDL-C did not differ (3.4 ± 1.0 vs. 2.8 ± 0.8 mmol/L, p=0.21). Fasting plasma glucose was not different (5.2 ± 1.5 vs. 5.0 ± 0.4 mmol/L). Glucose curves after OGTT were significantly higher in carriers than in non-carriers (genotype * time interaction, p=0.005; plasma glucose at t=60 min 9.0 ± 3.0 mmol/L vs. 6.0 ± 1.4 mmol/L respectively, p=0.02). During hyperglycemic clamps, carriers showed a lower first phase insulin and C-peptide response than non-carriers (genotype * time interaction, p<0.05 and p<0.01 respectively; insulin at t=5 min 164±118 vs. 352 ±141 pmol/L, p<0.05; C-peptide at t=5 min 1033 ± 628 vs. 1942 ± 723 pmol/L, p<0.05) but no difference in insulin sensitivity index (0.0216 ± 0.012 mg kg −1 . min −1 . pM −1 for carriers and 0.0197 ± 0.005 mg kg −1 . min −1 . pM −1 for non-carriers; p=0.73). Disposition index - a measure of β cell function, adjusted for insulin sensitivity - was lower in carriers than in non-carriers (1037 ± 610 vs. 2718 ± 1524; p<0.05). Non-carriers responded to an arginine stimulus with an increase in C-peptide levels (from 3558 ± 1240 pM to 6817 ± 1665 pM; p<0.005), whereas in carriers this increase did not reach statistical significance (from 3727 ± 1843 pM to 5480 ± 1757 pM; p=0.12). Conclusion Carriers of loss-of-function mutations in ABCA1 show impaired insulin secretion without insulin resistance, resulting in glucose intolerance. Our data confirm previous studies in mice and provide evidence for a role of ABCA1 in β cell dysfunction and the pathophysiology of diabetes mellitus in man.


Sign in / Sign up

Export Citation Format

Share Document