ORGANIC GEOCHEMISTRY OF MIDDLE MIOCENE (BADENIAN – SARMATIAN) SOURCE ROCKS AND MATURATION MODELLING IN THE POLISH AND UKRAINIAN SECTORS OF THE EXTERNAL CARPATHIAN FOREDEEP

2020 ◽  
Vol 43 (3) ◽  
pp. 277-300
Author(s):  
P. Kosakowski ◽  
G. Machowski ◽  
A. Kowalski ◽  
Y. V. Koltun ◽  
A. Zakrzewski ◽  
...  
2011 ◽  
Vol 42 (6) ◽  
pp. 655-677 ◽  
Author(s):  
Sanja Mrkić ◽  
Ksenija Stojanović ◽  
Aleksandar Kostić ◽  
Hans Peter Nytoft ◽  
Aleksandra Šajnović

2015 ◽  
Vol 45 (suppl 1) ◽  
pp. 41-61 ◽  
Author(s):  
José Alejandro Méndez Dot ◽  
José Méndez Baamonde ◽  
Dayana Reyes ◽  
Rommel Whilchy

ABSTRACTCarbonates of Cogollo Group (Apón, Lisure and Maraca formations) constitute the broader calcareous platform system originated during Aptian and Albian of Cretaceous in north-western South America, Maracaibo Basin, Venezuela. On the shallow shelf, a variety of calcareous sedimentary facies were deposited during marine transgressive and regressive cycles. Some of them developed porosity and constitute important hydrocarbon reservoirs. Due to some major marine transgressions, from early Aptian, the anoxic environment and characteristic facies of a pelagic environment moved from the outer slope and basin to the shallow shelf, during specific time intervals, favouring the sedimentation of organic matter-rich facies, which correspond to the oceanic anoxic events (OAEs) 1a and 1b. The source rock of Machiques Member (Apón Formation) was deposited during early Aptian OAE 1a (~ 120 Ma). The source rock of Piché Member, located at the top of the Apón Formation, was deposited during late Aptian OAE 1b (~ 113 Ma). Finally, La Luna Formation, from Cenomanian, that covers the OAE 2 (~ 93 Ma), represents the most important source rock in the Maracaibo Basin. In this way and based on sedimentological and organic geochemistry results from the determinations performed on 247 samples belonging to six cores in the Maracaibo Basin, we propose these two organic-rich levels, deposited on the shallow shelf of the Cogollo Group, as "effective source rocks", additional to La Luna Formation, with oil migration in relatively small distances to the porosity facies.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Haiping Huang ◽  
Hong Zhang ◽  
Zheng Li ◽  
Mei Liu

To the accurate reconstruction of the hydrocarbon generation history in the Dongying Depression, Bohai Bay Basin, East China, core samples of the Eocene Shahejie Formation from 3 shale oil boreholes were analyzed using organic petrology and organic geochemistry methods. The shales are enriched in organic matter with good to excellent hydrocarbon generation potential. The maturity indicated by measured vitrinite reflectance (%Ro) falls in the range of 0.5–0.9% and increases with burial depth in each well. Changes in biomarker and aromatic hydrocarbon isomer distributions and biomarker concentrations are also unequivocally correlated with the thermal maturity of the source rocks. Maturity/depth relationships for hopanes, steranes, and aromatic hydrocarbons, constructed from core data indicate different well locations, have different thermal regimes. A systematic variability of maturity with geographical position along the depression has been illustrated, which is a dependence on the distance to the Tanlu Fault. Higher thermal gradient at the southern side of the Dongying Depression results in the same maturity level at shallower depth compared to the northern side. The significant regional thermal regime change from south to north in the Dongying Depression may exert an important impact on the timing of hydrocarbon maturation and expulsion at different locations. Different exploration strategies should be employed accordingly.


2004 ◽  
Vol 27 (4) ◽  
pp. 373-388 ◽  
Author(s):  
I. Kurovets ◽  
G. Prytulka ◽  
Y. Shpot ◽  
T. M. Peryt

Author(s):  
J. L. Clayton ◽  
I. Koncz ◽  
J. D. King ◽  
E. Tatár

Minerals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 439 ◽  
Author(s):  
Delu Li ◽  
Rongxi Li ◽  
Di Zhao ◽  
Feng Xu

Measurements of total organic carbon, Rock-Eval pyrolysis, X-ray diffraction, scanning electron microscope, maceral examination, gas chromatography, and gas chromatography-mass spectrometry were conducted on the organic-rich shale of Lower Paleozoic Niutitang Formation and Longmaxi Formation in Dabashan foreland belt to discuss the organic matter characteristic, organic matter origin, redox condition, and salinity. The results indicate that the Niutiang Formation and Longmaxi Formation organic-rich shale are good and very good source rocks with Type I kerogen. Both of the shales have reached mature stage for generating gas. Biomarker analyses indicate that the organic matter origin of Niutitang Formation and Longmaxi Formation organic-rich shale are all derived from the lower bacteria and algae, and the organic matter are all suffered different biodegradation degrees. During Niutitang Formation and Longmaxi Formation period, the redox conditions are both anoxic with no stratification and the sedimentary water is normal marine water.


Sign in / Sign up

Export Citation Format

Share Document