Distribution and density of melatonin receptors in human main pancreatic islet cell types

2018 ◽  
Vol 65 (1) ◽  
pp. e12480 ◽  
Author(s):  
Juliane Zibolka ◽  
Ivonne Bazwinsky-Wutschke ◽  
Eckhard Mühlbauer ◽  
Elmar Peschke
Development ◽  
1979 ◽  
Vol 52 (1) ◽  
pp. 23-38
Author(s):  
Ann Andrew ◽  
Beverley Kramer

To determine whether or not any pancreatic islet cell type arises from rhombencephalic levels of neurectoderm, lengths of presumptive rhombencephalon (containing potential neural crest) of Black Australorp chick embryos at 6- to 9-somite stages were replaced isotopically and isochronically by neural tube of Japanese quail embryos. Some transplants included mesencephalic regions. In some cases various levels of the rhombencephalon were deleted and not replaced. The quail nuclear marker was detected in cranial ganglia in operated embryos sacrificed at 3¾ days of incubation and in enteric ganglia and cells accompanying some pancreatic nerves, in embryos killed at 7 days of incubation. This provided evidence of normal migration of crest cells from the grafts. Dopa was administered to the younger embryos, which were submitted to the formaldehyde-induced fluorescence procedure to demonstrate APUD (Amine Precursor Uptake and Decarboxylation) cells. No pancreatic APUD cells exhibited the quail nuclear marker. In 9- to 11-day embryos, A and B cells were identified by specific light and electron microscopic features. None showed the quail marker. The marker was also absent from those D cells seen and from cells of an as yet unidentified type, but not enough of these were found to warrant a conclusion. All islet cell types were found in embryos from which various levels of the rhombencephalon had been deleted. It is concluded that at least A and B islet cells are not derived from the rhombencephalic neurectoderm and probably not from mesencephalic levels. Their most likely origin remains the endoderm, which was the accepted source until recently


EMBO Reports ◽  
2015 ◽  
Vol 17 (2) ◽  
pp. 178-187 ◽  
Author(s):  
Jin Li ◽  
Johanna Klughammer ◽  
Matthias Farlik ◽  
Thomas Penz ◽  
Andreas Spittler ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Marta Perez-Frances ◽  
Léon van Gurp ◽  
Maria Valentina Abate ◽  
Valentina Cigliola ◽  
Kenichiro Furuyama ◽  
...  

AbstractThe cellular identity of pancreatic polypeptide (Ppy)-expressing γ-cells, one of the rarest pancreatic islet cell-type, remains elusive. Within islets, glucagon and somatostatin, released respectively from α- and δ-cells, modulate the secretion of insulin by β-cells. Dysregulation of insulin production raises blood glucose levels, leading to diabetes onset. Here, we present the genetic signature of human and mouse γ-cells. Using different approaches, we identified a set of genes and pathways defining their functional identity. We found that the γ-cell population is heterogeneous, with subsets of cells producing another hormone in addition to Ppy. These bihormonal cells share identity markers typical of the other islet cell-types. In mice, Ppy gene inactivation or conditional γ-cell ablation did not alter glycemia nor body weight. Interestingly, upon β-cell injury induction, γ-cells exhibited gene expression changes and some of them engaged insulin production, like α- and δ-cells. In conclusion, we provide a comprehensive characterization of γ-cells and highlight their plasticity and therapeutic potential.


2021 ◽  
Vol 183 ◽  
pp. 113215
Author(s):  
Patrycja Sokolowska ◽  
Kamil Zukowski ◽  
Justyna Janikiewicz ◽  
Elzbieta Jastrzebska ◽  
Agnieszka Dobrzyn ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document