Distribution of neutrophil and monocyte/macrophage populations induced by the CXCR4 inhibitor AMD3100 in blood and periodontal tissue early after periodontitis induction

Author(s):  
Ae Ri Kim ◽  
Eun‑Jung Bak ◽  
Yun‑Jung Yoo
Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 172
Author(s):  
Steen Vang Petersen ◽  
Nanna Bach Poulsen ◽  
Cecilie Linneberg Matthiesen ◽  
Frederik Vilhardt

Macrophages and related tissue macrophage populations use the classical NADPH oxidase (NOX2) for the regulated production of superoxide and derived oxidants for pathogen combat and redox signaling. With an emphasis on macrophages, we discuss how sorting into secretory storage vesicles, agonist-responsive membrane trafficking, and segregation into sphingolipid and cholesterol-enriched microdomains (lipid rafts) determine the subcellular distribution and spatial organization of NOX2 and superoxide dismutase-3 (SOD3). We discuss how inflammatory activation of macrophages, in part through small GTPase Rab27A/B regulation of the secretory compartments, mediates the coalescence of these two proteins on the cell surface to deliver a focalized hydrogen peroxide output. In interplay with membrane-embedded oxidant transporters and redox sensitive target proteins, this arrangement allows for the autocrine and paracrine signaling, which govern macrophage activation states and transcriptional programs. By discussing examples of autocrine and paracrine redox signaling, we highlight why formation of spatiotemporal microenvironments where produced superoxide is rapidly converted to hydrogen peroxide and conveyed immediately to reach redox targets in proximal vicinity is required for efficient redox signaling. Finally, we discuss the recent discovery of macrophage-derived exosomes as vehicles of NOX2 holoenzyme export to other cells.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Nicholas Borcherding ◽  
Ajaykumar Vishwakarma ◽  
Andrew P. Voigt ◽  
Andrew Bellizzi ◽  
Jacob Kaplan ◽  
...  

AbstractClear cell renal cell carcinoma (ccRCC) is one of the most immunologically distinct tumor types due to high response rate to immunotherapies, despite low tumor mutational burden. To characterize the tumor immune microenvironment of ccRCC, we applied single-cell-RNA sequencing (SCRS) along with T-cell-receptor (TCR) sequencing to map the transcriptomic heterogeneity of 25,688 individual CD45+ lymphoid and myeloid cells in matched tumor and blood from three patients with ccRCC. We also included 11,367 immune cells from four other individuals derived from the kidney and peripheral blood to facilitate the identification and assessment of ccRCC-specific differences. There is an overall increase in CD8+ T-cell and macrophage populations in tumor-infiltrated immune cells compared to normal renal tissue. We further demonstrate the divergent cell transcriptional states for tumor-infiltrating CD8+ T cells and identify a MKI67 + proliferative subpopulation being a potential culprit for the progression of ccRCC. Using the SCRS gene expression, we found preferential prediction of clinical outcomes and pathological diseases by subcluster assignment. With further characterization and functional validation, our findings may reveal certain subpopulations of immune cells amenable to therapeutic intervention.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tomomi Nakamura ◽  
Motozo Yamashita ◽  
Kuniko Ikegami ◽  
Mio Suzuki ◽  
Manabu Yanagita ◽  
...  

AbstractAutophagy is a lysosomal protein degradation system in which the cell self-digests its intracellular protein components and organelles. Defects in autophagy contribute to the pathogenesis of age-related chronic diseases, such as myocardial infarction and rheumatoid arthritis, through defects in the extracellular matrix (ECM). However, little is known about autophagy in periodontal diseases characterised by the breakdown of periodontal tissue. Tooth-supportive periodontal ligament (PDL) tissue contains PDL cells that produce various ECM proteins such as collagen to maintain homeostasis in periodontal tissue. In this study, we aimed to clarify the physiological role of autophagy in periodontal tissue. We found that autophagy regulated type I collagen synthesis by elimination of misfolded proteins in human PDL (HPDL) cells. Inhibition of autophagy by E-64d and pepstatin A (PSA) or siATG5 treatment suppressed collagen production in HPDL cells at mRNA and protein levels. Immunoelectron microscopy revealed collagen fragments in autolysosomes. Accumulation of misfolded collagen in HPDL cells was confirmed by sodium dodecyl sulfate–polyacrylamide gel electrophoresis. E-64d and PSA treatment suppressed and rapamycin treatment accelerated the hard tissue-forming ability of HPDL cells. Our findings suggest that autophagy is a crucial regulatory process that facilitates type I collagen synthesis and partly regulates osteoblastic differentiation of PDL cells.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Yi Hu ◽  
Xu Zhang ◽  
Jing Zhang ◽  
Xinyi Xia ◽  
Huxiao Li ◽  
...  

Abstract Background Increasing evidence suggests a causal link between periodontitis and cognitive disorders. Systemic inflammation initiated by periodontitis may mediate the development of cognitive impairment. Our study aims to investigate the effect of ligature-induced periodontitis on cognitive function and the role of signal transducers and activators of transcription 3 (STAT3) in this process. Materials and methods Ligature-induced periodontitis was established, and the rats were treated intraperitoneally with/without the pSTAT3 inhibitor cryptotanshinone (CTS). Alveolar bone resorption and periodontal inflammation were detected by micro-computed tomography analysis and histopathological evaluation. Locomotor activity and cognitive function were evaluated by the open field test and the Morris water maze test, respectively. The activation of microglia and astrocytes in the hippocampus and cortex was assessed by immunohistochemistry (IHC). The expression of interleukins (IL-1β, IL-6, IL-8, IL-21) in both the periphery and cortex was evaluated by RT-PCR and ELISA. The expression of TLR/NF-κB and ROS cascades was evaluated by RT-PCR. The expression of pSTAT3 and the activation of the STAT3 signaling pathway (JAK2, STAT3, and pSTAT3) in the periodontal tissue and cortex were assessed by IHC and Western blot. The expression of amyloid precursor protein (APP) and its key secretases was evaluated by RT-PCR. The level of amyloid β-protein (Aβ) and the ratio of Aβ1-40/1-42 were measured via ELISA in the plasma and cortex while IHC was used to detect the level of Aβ1-42 in the brain. Results In periodontal ligature rats, significant alveolar bone resorption and local inflammatory cell infiltration were present. Apparent increases in inflammatory cytokines (IL-1β, IL-6, IL-8, and IL-21) were detected in peripherial blood and brain. Additionally, spatial learning and memory ability was impaired, while locomotor activity was not affected. Activated microglia and astrocytes were found in the cortex and hippocampus, presenting as enlarged cell bodies and irregular protrusions. Levels of TLR/NF-kB, PPAR and ROS were altered. The STAT3 signaling pathway was activated in both the periodontal tissue and cortex, and the processing of APP by β- and γ-secretases was promoted. The changes mentioned above could be relieved by the pSTAT3 inhibitor CTS. Conclusions Ligature-induced periodontitis in rats resulted in systemic inflammation and further abnormal APP processing, leading to cognitive impairments. In this progress, the activation of the STAT3 signaling pathway may play an important role by increasing inflammatory load and promoting neuroinflammation.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii70-ii70
Author(s):  
Javier Urcuyo ◽  
Andrea Hawkins-Daarud ◽  
Susan Massey ◽  
Jeffrey Bruce ◽  
Peter Canoll ◽  
...  

Abstract Glioblastoma (GBM) is the one of the most aggressive and common primary brain malignancies, with a poor median overall survival of less than 15 months. While the immune system is activated and brain-resident microglia and blood-derived macrophages combat the tumor, the tumor can convert some microglia and macrophages to instead exhibit an immune-suppressive phenotype. These co-opted immune cells are thereby termed ‘glioma-associated microglia and macrophages’ (GAMMs), as they allow for continued tumor growth. However, limited clinical data has been collected to understand this phenomenon. As a result, we have collected spatially-distributed image-localized biopsies from a cohort of patients and performed RNA sequencing on each sample. Correlations between normalized RNA counts of genetic markers for macrophages (i.e., CD68, CD163), tumor populations (i.e., SOX2, OLIG2), and key cell functions (i.e., KI67, CASP3) were analyzed. To further investigate the temporal effects that GAMMs have on GBM growth, we proposed the Proliferation-Invasion-Macrophage (PIM) model. This system of partial differential equations incorporates the proliferative and invasive behavior of GBM, as well as populations for both ‘healthy’ and ‘glioma-associated’ macrophages. By exploring the parameter space, we classified the various dynamics of tumor progression and how they relate to the immune response. With further insights of the interactions between GBM and macrophage populations, we can begin to parameterize the model on a patient-specific basis and provide insights to personalized immunotherapies and other novel immune-targeted treatments.


Sign in / Sign up

Export Citation Format

Share Document