The physiology of leadership in fish shoals: leaders have lower maximal metabolic rates and lower aerobic scope

2018 ◽  
Vol 305 (2) ◽  
pp. 73-81 ◽  
Author(s):  
A. J. W. Ward ◽  
J. E. Herbert-Read ◽  
T. M. Schaerf ◽  
F. Seebacher
2021 ◽  
Author(s):  
◽  
Carla Edworthy

Ocean acidification (OA) is a global phenomenon referring to a decrease in ocean pH and a perturbation of the seawater carbonate system due to ever-increasing atmospheric CO2 concentrations. In coastal environments, identifying the impacts of OA is complex due to the multiple contributors to pH variability by coastal processes, such as freshwater inflow, upwelling, hydrodynamic processes, and biological activity. The aim of this PhD study was to quantify the local processes occurring in a temperate coastal embayment, Algoa Bay in South Africa, that contribute to pH and carbonate chemistry variability over time (monthly and 24-hour) and space (~10 km) and examine how this variability impacts a local fish species, Diplodus capensis, also commonly known as ‘blacktail’. Algoa Bay, known for its complex oceanography, is an interesting location in which to quantify carbonate chemistry variability. To assess this variability, monitoring sites were selected to coincide with the Algoa Bay Sentinel Site long-term ecological research (LTER) and continuous monitoring (CMP) programmes. The average pH at offshore sites in the bay was 8.03 ± 0.07 and at inshore sites was 8.04 ± 0.15. High pH variability (~0.55–0.61 pH units) was recorded at both offshore (>10 m depth) and inshore sites (intertidal surf zones). Many sites in the bay, especially the atypical site at Cape Recife, exhibit higher than the average pH levels (>8.04), suggesting that pH variability may be biologically driven. This is further evidenced by high diurnal variability in pH (~0.55 pH units). Although the specific drivers of the high pH variability in Algoa Bay could not be identified, baseline carbonate chemistry conditions were identified, which is necessary information to design and interpret biological experiments. Long-term, continuous monitoring is required to improve understanding of the drivers of pH variability in understudied coastal regions, like Algoa Bay. A local fisheries species, D. capensis, was selected as a model species to assess the impacts of future OA scenarios in Algoa Bay. It was hypothesized that this temperate, coastally distributed species would be adapted to naturally variable pH conditions and thus show some tolerance to low pH, considering that they are exposed to minimum pH levels of 7.77 and fluctuations of up to 0.55 pH units. Laboratory perturbation experiments were used to expose early postflexion stage of D. capensis to a range of pH treatments that were selected based on the measured local variability (~8.0–7.7 pH), as well as future projected OA scenarios (7.6–7.2 pH). Physiological responses were estimated using intermittent flow respirometry by quantifying routine and active metabolic rates as well as relative aerobic scope at each pH treatment. The behavioural responses of the larvae were also assessed at each pH treatment, as activity levels, by measuring swimming distance and speed in video-recording experiments, as well as feeding rates. D. capensis had sufficient physiological capacity to maintain metabolic performance at pH levels as low as 7.27, as evidenced by no changes in any of the measured metabolic rates (routine metabolic rate, active metabolic rate, and relative aerobic scope) after exposure to the range of pH treatments (8.02–7.27). Feeding rates of D. capensis were similarly unaffected by pH treatment. However, it appears that subtle increases in activity level (measured by swimming distance and swimming speed experiments) occur with a decrease in pH. These changes in activity level were a consequence of a change in behaviour rather than metabolic constraints. This study concludes, however, that based on the parameters measured, there is no evidence for survival or fitness related consequences of near future OA on D. capensis. OA research is still in its infancy in South Africa, and the potential impacts of OA to local marine resources has not yet been considered in local policy and resource management strategies. Integrating field monitoring and laboratory perturbation experiments is emerging as best practice in OA research. This is the first known study on the temperate south coast of South Africa to quantify local pH variability and to use this information to evaluate the biological response of a local species using relevant local OA scenarios as treatment levels for current and near future conditions. Research on local conditions in situ and the potential impacts of future OA scenarios on socio-economically valuable species, following the model developed in this study, is necessary to provide national policy makers with relevant scientific data to inform climate change management policies for local resources.


2016 ◽  
Vol 12 (10) ◽  
pp. 20160586 ◽  
Author(s):  
Sonya K. Auer ◽  
Karine Salin ◽  
Agata M. Rudolf ◽  
Graeme J. Anderson ◽  
Neil B. Metcalfe

Metabolic rates reflect the energetic cost of living but exhibit remarkable variation among conspecifics, partly as a result of the constraints imposed by environmental conditions. Metabolic rates are sensitive to changes in temperature and oxygen availability, but effects of food availability, particularly on maximum metabolic rates, are not well understood. Here, we show in brown trout ( Salmo trutta ) that maximum metabolic rates are immutable but minimum metabolic rates increase as a positive function of food availability. As a result, aerobic scope (i.e. the capacity to elevate metabolism above baseline requirements) declines as food availability increases. These differential changes in metabolic rates likely have important consequences for how organisms partition available metabolic power to different functions under the constraints imposed by food availability.


2020 ◽  
Vol 117 (50) ◽  
pp. 31963-31968
Author(s):  
Juan G. Rubalcaba ◽  
Wilco C. E. P. Verberk ◽  
A. Jan Hendriks ◽  
Bart Saris ◽  
H. Arthur Woods

Both oxygen and temperature are fundamental factors determining metabolic performance, fitness, ecological niches, and responses of many aquatic organisms to climate change. Despite the importance of physical and physiological constraints on oxygen supply affecting aerobic metabolism of aquatic ectotherms, ecological theories such as the metabolic theory of ecology have focused on the effects of temperature rather than oxygen. This gap currently impedes mechanistic models from accurately predicting metabolic rates (i.e., oxygen consumption rates) of aquatic organisms and restricts predictions to resting metabolism, which is less affected by oxygen limitation. Here, we expand on models of metabolic scaling by accounting for the role of oxygen availability and temperature on both resting and active metabolic rates. Our model predicts that oxygen limitation is more likely to constrain metabolism in larger, warmer, and active fish. Consequently, active metabolic rates are less responsive to temperature than are resting metabolic rates, and metabolism scales to body size with a smaller exponent whenever temperatures or activity levels are higher. Results from a metaanalysis of fish metabolic rates are consistent with our model predictions. The observed interactive effects of temperature, oxygen availability, and body size predict that global warming will limit the aerobic scope of aquatic ectotherms and may place a greater metabolic burden on larger individuals, impairing their physiological performance in the future. Our model reconciles the metabolic theory with empirical observations of oxygen limitation and provides a formal, quantitative framework for predicting both resting and active metabolic rate and hence aerobic scope of aquatic ectotherms.


2020 ◽  
Author(s):  
Natalia Gutierrez-Pinto ◽  
Gustavo A. Londoño ◽  
Mark A. Chappell ◽  
Jay F. Storz

AbstractEndotherms at high altitude face the combined challenges of cold and hypoxia. Cold increases thermoregulatory costs, and hypoxia may limit both thermogenesis and aerobic exercise capacity. Consequently, in comparisons between closely related highland and lowland taxa, we might expect to observe consistent differences in basal metabolism (BMR), maximal metabolism (MMR), and aerobic scope. Broad-scale comparative studies of birds reveal no association between BMR and native elevation, and altitude effects on MMR have not been investigated. We tested for altitude-related variation in aerobic metabolism in 10 Andean passerines representing five pairs of closely related species with contrasting elevational ranges. Mass-corrected BMR and MMR were significantly higher in most highland species relative to their lowland counterparts, but there was no uniform elevational trend across all pairs of species.Summary statementWe tested for altitude-related variation in aerobic metabolism in species pairs with contrasting elevational ranges. Metabolic rates were significantly higher in most highland species but there was no uniform elevational trend.


Author(s):  
Malthe Hvas ◽  
Samantha Bui

Parasites are widespread in nature where they affect energy budgets of hosts, and depending on the imposed pathogenic severity, this may reduce host fitness. However, the energetic costs of parasite infections are rarely quantified. In this study, we measured metabolic rates in recently seawater adapted Atlantic salmon (Salmo salar) infected with the ectoparasitic copepod Lepeophtheirus salmonis and used an aerobic scope framework to assess the potential ecological impact of this parasite-host interaction. The early chalimus stages of L. salmonis did not affect either standard or maximum metabolic rates. However, the later mobile pre-adult stages caused an increase in both standard and maximum metabolic rate yielding a preserved aerobic scope. Notably, standard metabolic rates were elevated by 26%, presumably caused by increased osmoregulatory burdens and costs of mobilizing immune responses. The positive impact on maximum metabolic rates was unexpected and suggests that fish are able to transiently overcompensate energy production to endure the burden of parasites and thus allow for continuation of normal activities. However, infected fish are known to suffer reduced growth, and this suggests that a trade-off exists in acquisition and assimilation of resources despite of an uncompromised aerobic scope. As such, when assessing impacts of environmental or biotic factors, we suggest that elevated routine costs may be a stronger predictor of reduced fitness than the available aerobic scope. Furthermore, studying effects on parasitized fish in an ecophysiological context deserves more attention, especially considering interacting effects of other stressors in the Anthropocene.


1970 ◽  
Vol 64 (2) ◽  
pp. 347-358
Author(s):  
A. Stanley Weltman ◽  
Arthur M. Sackler

ABSTRACT Body weight, metabolic rate, locomotor activity and alterations in endocrine organ activity were noted in recessive homozygous male whirler mice and the phenotypically »normal« heterozygotes. Representative populations of the two types were studied at different age levels. In general, body weights of the whirler mice were consistently and significantly lower. Open-field locomotion studies similarly indicated heightened locomotor activity. Total leukocyte and eosinophil counts were either markedly or significantly lower in the homozygous vs. heterozygous whirler groups. Evaluation of relative organ weights showed significantly increased adrenal weights in whirler mice sacrificed at 14 weeks and 11 months of age. These changes were accompanied by involution of the thymus. Thus, the varied data indicate persistent increased metabolism and adrenocortical activity during the life-span of the whirler mice. Seminal vesicle weight decreases in the whirler males at 11 months suggest lower gonadal function. The findings are in accord with previous studies of alterations in metabolic rates and endocrine function of homozygous whirler vs. heterozygous female mice.


Author(s):  
Andrew Gelman ◽  
Deborah Nolan

Descriptive statistics is the typical starting point for a statistics course, and it can be tricky to teach because the material is more difficult than it first appears. The activities in this chapter focus more on the topics of data displays and transformations, rather than the mean, median, and standard deviation, which are covered easily in a textbook and on homework assignments. Specific topics include: distributions and handedness scores; extrapolation of time series and world record times for the mile run; linear combinations and economic indexes; scatter plots and exam scores; and logarithmic transformations and metabolic rates.


Sign in / Sign up

Export Citation Format

Share Document