Restriction of parent body heating by metal‐troilite melting: Thermal models for the ordinary chondrites

2014 ◽  
Vol 49 (4) ◽  
pp. 636-651 ◽  
Author(s):  
Eleanor R. Mare ◽  
Andrew G. Tomkins ◽  
Belinda M. Godel
2020 ◽  
Vol 6 (16) ◽  
pp. eaay8641
Author(s):  
Graham H. Edwards ◽  
Terrence Blackburn

Chondritic meteorites, derived from asteroidal parent bodies and composed of millimeter-sized chondrules, record the early stages of planetary assembly. Yet, the initial planetesimal size distribution and the duration of delay, if any, between chondrule formation and chondrite parent body accretion remain disputed. We use Pb-phosphate thermochronology with planetesimal-scale thermal models to constrain the minimum size of the LL ordinary chondrite parent body and its initial allotment of heat-producing 26Al. Bulk phosphate 207Pb/206Pb dates of LL chondrites record a total duration of cooling ≥75 Ma, with an isothermal interior that cools over ≥30 Ma. Since the duration of conductive cooling scales with parent body size, these data require a ≥150-km radius parent body and a range of bulk initial 26Al/27Al consistent with the initial 26Al/27Al ratios of constituent LL chondrules. The concordance suggests that rapid accretion of a large LL parent asteroid occurred shortly after a major chondrule-forming episode.


Author(s):  
Eri Tatsumi ◽  
Marcel Popescu ◽  
Humberto Campins ◽  
Julia de León ◽  
Juan Luis Rizos García ◽  
...  

Abstract Using the multiband imager MapCam onboard the OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer) spacecraft, we identified 77 instances of proposed exogenic materials distributed globally on the surface of the B-type asteroid (101955) Bennu. We identified materials as exogenic on the basis of an absorption near 1 µm that is indicative of anhydrous silicates. The exogenic materials are spatially resolved by the telescopic camera PolyCam. All such materials are brighter than their surroundings, and they are expressed in a variety of morphologies: homogeneous, breccia-like, inclusion-like, and others. Inclusion-like features are the most common. Visible spectrophotometry was obtained for 46 of the 77 locations from MapCam images. Principal component analysis indicates at least two trends: (i) mixing of Bennu's average spectrum with a strong 1-µm band absorption, possibly from pyroxene-rich material, and (ii) mixing with a weak 1-µm band absorption. The endmember with a strong 1-µm feature is consistent with Howardite-Eucrite-Diogenite (HED) meteorites, whereas the one showing a weak 1-µm feature may be consistent with HEDs, ordinary chondrites, or carbonaceous chondrites. The variation in the few available near-infrared reflectance spectra strongly suggests varying compositions among the exogenic materials. Thus, Bennu might record the remnants of multiple impacts with different compositions to its parent body, which could have happened in the very early history of the Solar System. Moreover, at least one of the exogenic objects is compositionally different from the exogenic materials found on the similar asteroid (162173) Ryugu, and they suggest different impact tracks.


2016 ◽  
Vol 113 (11) ◽  
pp. 2886-2891 ◽  
Author(s):  
Gerrit Budde ◽  
Thorsten Kleine ◽  
Thomas S. Kruijer ◽  
Christoph Burkhardt ◽  
Knut Metzler

Chondrules may have played a critical role in the earliest stages of planet formation by mediating the accumulation of dust into planetesimals. However, the origin of chondrules and their significance for planetesimal accretion remain enigmatic. Here, we show that chondrules and matrix in the carbonaceous chondrite Allende have complementary 183W anomalies resulting from the uneven distribution of presolar, stellar-derived dust. These data refute an origin of chondrules in protoplanetary collisions and, instead, indicate that chondrules and matrix formed together from a common reservoir of solar nebula dust. Because bulk Allende exhibits no 183W anomaly, chondrules and matrix must have accreted rapidly to their parent body, implying that the majority of chondrules from a given chondrite group formed in a narrow time interval. Based on Hf-W chronometry on Allende chondrules and matrix, this event occurred ∼2 million years after formation of the first solids, about coeval to chondrule formation in ordinary chondrites.


2008 ◽  
Vol 274 (1-2) ◽  
pp. 93-102 ◽  
Author(s):  
N.G. Rudraswami ◽  
J.N. Goswami ◽  
B. Chattopadhyay ◽  
S.K. Sengupta ◽  
A.P. Thapliyal

Icarus ◽  
1997 ◽  
Vol 128 (1) ◽  
pp. 104-113 ◽  
Author(s):  
F. Migliorini ◽  
A. Manara ◽  
F. Scaltriti ◽  
P. Farinella ◽  
A. Cellino ◽  
...  

2020 ◽  
Author(s):  
Naoki Hirakawa ◽  
Yoko Kebukawa ◽  
Yoshihiro Furukawa ◽  
Masashi Kondo ◽  
Kensei Kobayashi

Abstract Early evolution of Solar System small bodies proceeded through interactions of mineral and water. Melting of water ice accreted with mineral particles to the parent body results in the formation of secondary minerals, the so-called aqueous alteration. Formation of phyllosilicates from anhydrous silicates is a typical alteration effect recorded in primitive meteorites. In addition to mineral and water, organic matter could have been also a significant component in meteorite parent bodies. However, the role of organic matter in the alteration of silicates is not well understood. Here we show the in-situ formation of hydrated silicates through a mineral–organic interaction without the initial presence of water. Proto-phyllosilicates were experimentally confirmed on the anhydrous mineral (olivine) surface after being heated with molecular cloud organic matter analog at 300 °C for 10 days in this study. It could be due to H 2 O generated through pyrolysis of the organic compounds with hydroxy groups. Our results indicated that formation of phyllosilicates on the olivine surface in contact with organic matter can occur in meteorite parent bodies which formed inside the H 2 O snow line but accreted with organic matter, initially without water. Water formed through decomposition of organic matter could be one candidate for hydrous silicate formation in ordinary chondrites from S-type asteroids inside the H 2 O snow line. Although the origin of water in ordinary chondrites is under debate, water generation from organic matter may also explain the D-rich water in ordinary chondrites because primordial organic matter is known to be D-rich.


Sign in / Sign up

Export Citation Format

Share Document