scholarly journals Population structure and migration of the Tobacco Blue Mold Pathogen,Peronospora tabacina,into North America and Europe

2018 ◽  
Vol 27 (3) ◽  
pp. 737-751 ◽  
Author(s):  
Monica Blanco-Meneses ◽  
Ignazio Carbone ◽  
Jean B. Ristaino
2021 ◽  
Author(s):  
Marcin Nowicki ◽  
Denita Hadziabdic Guerry ◽  
Robert N Trigiano ◽  
Fabian Runge ◽  
Marco Thines ◽  
...  

Peronospora tabacina is an obligate parasite that causes blue mold of tobacco. The pathogen reproduces primarily asexually by sporangia, and sexual oospores are a rarely observed form of propagation. A collection of 122 isolates of P. tabacina was genotyped using nine microsatellites to assess the population structure of individuals from subpopulations collected from Central, Southern, and Eastern Europe, the Middle East, Central and North America, and Australia. Genetic variation among the six subpopulations accounted for about 8% of total variation with moderate levels of genetic differentiation, high gene flow among these subpopulations, and a positive correlation between geographic and genetic distance (r = 0.225; P<0.001). Evidence of linkage disequilibrium (P<0.001) showed that populations contained partially clonal subpopulations, except subpopulations from Australia and Mediterranean Europe. High genetic variation and population structure among samples could be explained by continuous gene flow across continents via infected transplant exchange and/or long-distance dispersal of sporangia via wind currents. This study analyzed the most numerous P. tabacina collection to date and allowed conclusions on the migration, mutation, and evolutionary history of this obligate biotrophic oomycete. The evidence pointed to the species origin in Australia and identified intra- and inter-continental migration patterns of this important pathogen.


2021 ◽  
pp. 1-13
Author(s):  
Emma Alfaro ◽  
Xochitl Inostroza ◽  
José E. Dipierri ◽  
Daniela Peña Aguilera ◽  
Jorge Hidalgo ◽  
...  

Abstract The analysis of multiple population structures (biodemographic, genetic and socio-cultural) and their inter-relations contribute to a deeper understanding of population structure and population dynamics. Genetically, the population structure corresponds to the deviation of random mating conditioned by a limited number of ancestors, by restricted migration in the social or geographic space, or by preference for certain consanguineous unions. Through the isonymic method, surname frequency and distribution across the population can supply quantitative information on the structure of a human population, as they constitute universal socio-cultural variables. Using documentary sources to undertake the Doctrine of Belén’s (Altos de Arica, Chile) historical demography reconstruction between 1763 and 1820, this study identified an indigenous population with stable patronymics. The availability of complete marriage, baptism and death records, low rates of migration and the significant percentage of individuals registered and constantly present in this population favoured the application of the isonymic method. The aim of this work was to use given names and surnames recorded in these documentary sources to reconstruct the population structure and migration pattern of the Doctrine of Belén between 1750 and 1813 through the isonymic method. The results of the study were consistent with the ethno-historical data of this ethnic space, where social cohesion was, in multiple ways, related to the regulation of daily life in colonial Andean societies.


2011 ◽  
Vol 38 (7) ◽  
pp. 1368-1380 ◽  
Author(s):  
Sarah A. Sonsthagen ◽  
Sandra L. Talbot ◽  
Kim T. Scribner ◽  
Kevin G. McCracken

2010 ◽  
Vol 192 (24) ◽  
pp. 6465-6476 ◽  
Author(s):  
Vartul Sangal ◽  
Heather Harbottle ◽  
Camila J. Mazzoni ◽  
Reiner Helmuth ◽  
Beatriz Guerra ◽  
...  

ABSTRACT Salmonellosis caused by Salmonella enterica serovar Newport is a major global public health concern, particularly because S. Newport isolates that are resistant to multiple drugs (MDR), including third-generation cephalosporins (MDR-AmpC phenotype), have been commonly isolated from food animals. We analyzed 384 S. Newport isolates from various sources by a multilocus sequence typing (MLST) scheme to study the evolution and population structure of the serovar. These were compared to the population structure of S. enterica serovars Enteritidis, Kentucky, Paratyphi B, and Typhimurium. Our S. Newport collection fell into three lineages, Newport-I, Newport-II, and Newport-III, each of which contained multiple sequence types (STs). Newport-I has only a few STs, unlike Newport-II or Newport-III, and has possibly emerged recently. Newport-I is more prevalent among humans in Europe than in North America, whereas Newport-II is preferentially associated with animals. Two STs of Newport-II encompassed all MDR-AmpC isolates, suggesting recent global spread after the acquisition of the bla CMY-2 gene. In contrast, most Newport-III isolates were from humans in North America and were pansusceptible to antibiotics. Newport was intermediate in population structure to the other serovars, which varied from a single monophyletic lineage in S. Enteritidis or S. Typhimurium to four discrete lineages within S. Paratyphi B. Both mutation and homologous recombination are responsible for diversification within each of these lineages, but the relative frequencies differed with the lineage. We conclude that serovars of S. enterica provide a variety of different population structures.


2016 ◽  
Author(s):  
NM Silva ◽  
S Kreutzer ◽  
C Papageorgopoulou ◽  
M Currat

AbstractRecent advances in sequencing techniques provide means to access direct genetic snapshots from the past with ancient DNA data (aDNA) from diverse periods of human prehistory. Comparing samples taken in the same region but at different time periods may indicate if there is continuity in the peopling history of that area or if a large genetic input, such as an immigration wave, has occurred. Here we propose a new modeling approach for investigating population continuity using aDNA, including two fundamental elements in human evolution that were absent from previous methods: population structure and migration. The method also considers the extensive temporal and geographic heterogeneity commonly found in aDNA datasets. We compare our spatially-explicit approach to the previous non-spatial method and show that it is more conservative and thus suitable for testing population continuity, especially when small, isolated populations, such as prehistoric ones, are considered. Moreover, our approach also allows investigating partial population continuity and we apply it to a real dataset of ancient mitochondrial DNA. We estimate that 91% of the current genetic pool in central Europe entered the area with immigrant Neolithic farmers, but a genetic contribution of local hunter-gatherers as large as 83% cannot be entirely ruled out.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10348
Author(s):  
Austin S. Chipps ◽  
Amanda M. Hale ◽  
Sara P. Weaver ◽  
Dean A. Williams

There are increasing concerns regarding bat mortality at wind energy facilities, especially as installed capacity continues to grow. In North America, wind energy development has recently expanded into the Lower Rio Grande Valley in south Texas where bat species had not previously been exposed to wind turbines. Our study sought to characterize genetic diversity, population structure, and effective population size in Dasypterus ega and D. intermedius, two tree-roosting yellow bats native to this region and for which little is known about their population biology and seasonal movements. There was no evidence of population substructure in either species. Genetic diversity at mitochondrial and microsatellite loci was lower in these yellow bat taxa than in previously studied migratory tree bat species in North America, which may be due to the non-migratory nature of these species at our study site, the fact that our study site is located at a geographic range end for both taxa, and possibly weak ascertainment bias at microsatellite loci. Historical effective population size (NEF) was large for both species, while current estimates of Ne had upper 95% confidence limits that encompassed infinity. We found evidence of strong mitochondrial differentiation between the two putative subspecies of D. intermedius (D. i. floridanus and D. i. intermedius) which are sympatric in this region of Texas, yet little differentiation using microsatellite loci. We suggest this pattern is due to secondary contact and hybridization and possibly incomplete lineage sorting at microsatellite loci. We also found evidence of some hybridization between D. ega and D. intermedius in this region of Texas. We recommend that our data serve as a starting point for the long-term genetic monitoring of these species in order to better understand the impacts of wind-related mortality on these populations over time.


2020 ◽  
Vol 13 (8) ◽  
pp. 2056-2070
Author(s):  
Yunke Wu ◽  
Steven M. Bogdanowicz ◽  
Jose A. Andres ◽  
Kendra A. Vieira ◽  
Baode Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document