scholarly journals Transformation of the cucurbit powdery mildew pathogen Podosphaera xanthii by Agrobacterium tumefaciens

2016 ◽  
Vol 213 (4) ◽  
pp. 1961-1973 ◽  
Author(s):  
Jesús Martínez‐Cruz ◽  
Diego Romero ◽  
Antonio Vicente ◽  
Alejandro Pérez‐García
2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Rita Milvia De Miccolis Angelini ◽  
Stefania Pollastro ◽  
Palma Rosa Rotondo ◽  
Cataldo Laguardia ◽  
Domenico Abate ◽  
...  

2018 ◽  
Vol 19 (3) ◽  
pp. 220-221 ◽  
Author(s):  
Anthony P. Keinath ◽  
Gabriel Rennberger ◽  
Chandrasekar S. Kousik

Resistance to boscalid, one of the older succinate-dehydrogenase inhibitors (SHDI) in Fungicide Resistance Action Committee (FRAC) code 7, was detected in Podosphaera xanthii, the cucurbit powdery mildew fungus, in South Carolina in July 2017. Resistance to the field rate (682 ppm) of boscalid was confirmed in greenhouse experiments and laboratory bioassays conducted on summer squash plants and cotyledons, respectively, that had been treated with a range of boscalid concentrations. This report is the first documentation of resistance to boscalid in P. xanthii in the southern United States.


Plant Disease ◽  
2019 ◽  
Vol 103 (7) ◽  
pp. 1515-1524 ◽  
Author(s):  
Alejandra Vielba-Fernández ◽  
Antonio de Vicente ◽  
Alejandro Pérez-García ◽  
Dolores Fernández-Ortuño

Powdery mildew, caused by the fungus Podosphaera xanthii, is one of the most economically important diseases affecting cucurbit crops in Spain. Currently, chemical control offers the most efficient management of the disease; however, P. xanthii isolates resistant to multiple classes of site-specific fungicides have been reported in the Spanish cucurbit powdery mildew population. In previous studies, resistance to the fungicides known as methyl benzimidazole carbamates (MBCs) was found to be caused by the amino acid substitution E198A on β-tubulin. To detect MBC-resistant isolates in a faster, more efficient, and more specific way than the traditional methods used to date, a loop-mediated isothermal amplification (LAMP) system was developed. In this study, three sets of LAMP primers were designed. One set was designed for the detection of the wild-type allele and two sets were designed for the E198A amino acid change. Positive results were only obtained with both mutant sets; however, LAMP reaction conditions were only optimized with primer set 2, which was selected for optimal detection of the E198A amino acid change in P. xanthii-resistant isolates, along with the optimal temperature and duration parameters of 65°C for 75 min, respectively. The hydroxynaphthol blue (HNB) metal indicator was used for quick visualization of results through the color change from violet to sky blue when the amplification was positive. HNB was added before the amplification to avoid opening the lids, thus decreasing the probability of contamination. To confirm that the amplified product corresponded to the β-tubulin gene, the LAMP product was digested with the enzyme LweI and sequenced. Our results show that the LAMP technique is a specific and reproducible method that could be used for monitoring MBC resistance of P. xanthii directly in the field.


Plant Disease ◽  
2011 ◽  
Vol 95 (12) ◽  
pp. 1586-1586 ◽  
Author(s):  
C. S. Kousik ◽  
R. S. Donahoo ◽  
C. G. Webster ◽  
W. W. Turechek ◽  
S. T. Adkins ◽  
...  

Cucurbit powdery mildew caused by the obligate parasite Podosphaera xanthii occurs commonly on foliage, petioles, and stems of most cucurbit crops grown in the United States. (3). However, in the field, fruit infection on cucurbits including watermelon (Citrullus lanatus), is rarely, if ever, observed (2). Consequently, it was atypical when severe powdery mildew-like symptoms were observed on seedless and seeded watermelon fruit on several commercial farms in southwestern Florida during November and December 2010. Severe powdery mildew was also observed on ‘Tri-X 313’ and ‘Mickey Lee’ fruit grown at SWFREC, Immokalee, FL. Infected fruit developed poorly and were not marketable. Powdery mildew symptoms were mainly observed on young immature fruit, but not on mature older fruit. Abundant powdery mildew conidia occurred on fruit surface, but not on the leaves. Conidia were produced in chains and averaged 35 × 21 μm. Observation of conidia in 3% KOH indicated the presence of fibrosin bodies commonly found in the cucurbit powdery mildew genus Podosphaera (3). Orange-to-dark brown chasmothecia (formerly cleisthothecia) containing a single ascus were detected on the surface of some fruit samples. Conidial DNA was subjected to PCR using specific primers designed to amplify the internal transcribed spacer (ITS) region of Podosphaera (4). The resulting amplicons were sequenced and found to be 100% identical to the ITS sequences of P. xanthii in the NCBI database (D84387, EU367960, AY450961, AB040322, AB040315). Sequences from the watermelon fruit isolate were also identical to several P. fusca (synonym P. xanthii), P. phaseoli (GQ927253), and P. balsaminae (AB462803) sequences. On the basis of morphological characteristics and ITS sequence analysis, the pathogen infecting watermelon fruit can be considered as P. xanthii (1,3,4). The powdery mildew isolate from watermelon fruit was maintained on cotyledons of squash (Cucurbita pepo, ‘Early Prolific Straight Neck’). Cotyledons and leaves of five plants each of various cucurbits and beans were inoculated with 10 μl of a conidial suspension (105conidia/ml) in water (0.02% Tween 20). Two weeks after inoculation, abundant conidia were observed on cucumber (Cucumis sativus, ‘SMR-58’) and melon (Cucumis melo) powdery mildew race differentials ‘Iran H’ and ‘Vedrantais’. However, no growth was observed on melon differentials ‘PI 414723’, ‘Edisto 47’, ‘PMR 5’, ‘PMR 45’, ‘MR 1’, and ‘WMR 29’ (2,3). The powdery mildew isolate from watermelon fruit behaved as melon race 1 (3). Mycelium and conidia were also observed on fruit surface of watermelon ‘Sugar Baby’ and a susceptible U.S. plant introduction (PI 538888) 3 weeks after inoculation. However, the disease was not as severe as what was observed in the fields in fall 2010. The pathogen did not grow on plants of Impatiens balsamina or on select bean (Phaseolus vulgaris) cultivars (‘Red Kidney’, ‘Kentucky Blue’, and ‘Derby Bush’), but did grow and produce abundant conidia on ‘Pinto bush bean’. Powdery mildew on watermelon fruit in production fields can be considered as a potentially new and serious threat requiring further studies to develop management strategies. References: (1) U. Braun and S. Takamatsu. Schlechtendalia 4:1, 2000. (2) A. R. Davis et al. J. Am. Soc. Hortic. Sci. 132:790, 2007. (3) M. T. McGrath and C. E. Thomas. In: Compendium of Cucurbit Diseases. American Phytopathological Society, St. Paul, MN, 1996. (4) S. Takamatsu and Y. Kano. Mycoscience 42:135, 2001.


Plant Disease ◽  
2013 ◽  
Vol 97 (6) ◽  
pp. 842-842 ◽  
Author(s):  
H. B. Lee

Cocklebur (Xanthium strumarium L., Asteraceae) is an annual broadleaf weed native to the Americas and eastern Asia. The plant is known as one of the worst competitive weeds in soybean fields and also is known to have some phytopharmacological or toxicological properties. In October 2011, a powdery mildew disease was observed on cocklebur growing in a natural landscape at Geomun Oreum located in Jeju Island, South Korea. Initial signs appeared as thin white colonies, which subsequently developed abundant growth on adaxial leaf surfaces. As the disease progressed, brown discoloration extended down infected leaves which withered. Conidia were formed singly and terminally on conidiophores. Primary conidia (20.3 to 28.6 [average 25.1] μm long × 11.1 to 15.2 [14.3] μm wide, n = 30) were ellipsoid with a round apex and truncate base. Conidiophores were straight or slightly curved and 60.1 to 101.7 (97.3) μm long × 8.2 to 13.2 (11.3) μm wide. Chasmothecia were not observed. No fibrosin bodies were observed in the conidia. Morphological characteristics were consistent with descriptions of Podosphaera xanthii (syn. P. fusca) (2,4). To confirm the identity of the causal fungus, the internal transcribed spacer (ITS) region inclusive of 5.8S and 28S rDNA was amplified from white patches consisting of mycelia and conidia on one leaf using ITS1 (5′-TCCGTAGGTGAACCTGCGG-3′) and LR5F (5′-GCTATCCTGAGGGAAAC-3′), and LROR (5′-ACCCGCTGAACTTAAGC-3′) and LR5F primer sets, respectively. The resulting sequences were deposited in GenBank (Accession Nos. JX502022 and JX964999). A NCBI BLASTn search revealed that the rDNA ITS (JX502022) and 28S (JX964999) homologies of isolate EML-XSPW1 represented 99.6% (512/514) and 100% (803/803) identity values with those of P. xanthii (AB040330 and AB462792, respectively). The rDNA ITS and 28S sequence analysis revealed that the causal fungus clustered with P. xanthii (syn. P. fusca), falling into the Xanthii/Fusca phylogenetic group (2,4). Pathogenicity was confirmed through inoculations made by gently pressing infected leaves onto mature leaves of healthy cocklebur plants in the field in August. The six inoculated leaves were sealed in sterilized vinyl bags to maintain humid conditions for 2 days. Seven days after inoculation, symptoms similar to those observed under natural infection were observed on the inoculated plant leaves. No symptoms developed on the uninoculated control plants. A fungal pathogen that was morphologically identical to the fungus originally observed on diseased plants was also observed on inoculated plants. Erysiphe cichoracearum, E. communis, Oidium asteris-punicei, O. xanthimi, P. xanthii, and P. fuliginea have all been reported to cause powdery mildew on cocklebur (1). P. xanthii was first reported on X. strumarium in Russia (3). To our knowledge, this is the first report of powdery mildew on cocklebur caused by P. xanthii in Korea. The powdery mildew pathogen may represent an option for biocontrol of the noxious weed in the near future. References: (1) D. F. Farr and A. Y. Rossman. Fungal Databases, Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases , December 11, 2012. (2) H. B. Lee. J. Microbiol. 51:1075, 2012. (3) V. A. Rusanov and T. S. Bulgakov. Mikol. Fitopatol. 42:314, 2008. (4) S. Takamatsu et al. Persoonia 24:38, 2010.


2020 ◽  
Vol 21 (4) ◽  
pp. 272-277
Author(s):  
Mohammad Babadoost ◽  
Salisu Sulley ◽  
Yiwen Xiang

This study was conducted to evaluate the sensitivity of cucurbit powdery mildew fungus (Podosphaera xanthii) to major fungicides used for managing this pathogen in the Midwestern United States. Fungicides azoxystrobin from the quinone outside inhibitors group, cyflufenamid from the phenylacetamide group, penthiopyrad from the succinate dehydrogenase inhibitors group, quinoxyfen from the quinolines group, and triflumizole from the demethylation inhibitors group were tested for their effectiveness for preventing infection of cucurbits by P. xanthii. In 2015 and 2016, 37 isolates of P. xanthii were evaluated for their sensitivity to azoxystrobin (Quadris 2.08SC), cyflufenamid (Torino 0.85SC), penthiopyrad (Fontelis 1.67SC), and triflumizole (Procure 480SC) on cucumber ‘Bush Crop’ cotyledon leaves. The number of isolates sensitive to tested concentrations of Quadris 2.08SC, Torino 0.85SC, Fontelis 1.67SC, and Procure 480SC was 8 (22%), 21 (57%), 20 (54%), and 23 (62%), respectively. During 2015 to 2018, Quadris 2.08SC, Torino 0.85SC, Fontelis 1.67SC, quinoxyfen (Quintec 250SC), and Procure 480SC were tested for their effectiveness for managing powdery mildew on pumpkin ‘Howden’ in the field. The results showed that powdery mildew was effectively managed in the plots treated with Procure 480SC and Quintec 250SC. However, management of the disease was less successful in the plots treated with Quadris 2.08SC, Torino 0.85SC, and Fontelis 1.67SC.


Sign in / Sign up

Export Citation Format

Share Document