Identification of recombinants carrying stripe rust resistance geneYr57and adult plant stem rust resistance geneSr2through marker‐assisted selection

2019 ◽  
Vol 138 (2) ◽  
pp. 148-153
Author(s):  
Sumaira Lodhi ◽  
Harbans Bariana ◽  
Mandeep Randhawa ◽  
Alvina Gul ◽  
Peter John ◽  
...  
Agronomy ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 497 ◽  
Author(s):  
Mandeep S. Randhawa ◽  
Navtej S. Bains ◽  
Virinder S. Sohu ◽  
Parveen Chhuneja ◽  
Richard M. Trethowan ◽  
...  

Three rust diseases namely; stem rust caused by Puccinia graminis f. sp. tritici (Pgt), leaf rust caused by Puccinia triticina (Pt), and stripe rust caused by Puccinia striiformis f. sp. tritici (Pst), are the most common fungal diseases of wheat (Triticum aestivum L.) and cause significant yield losses worldwide including Australia. Recently characterized stripe rust resistance genes Yr51 and Yr57 are effective against pre- and post-2002 Pst pathotypes in Australia. Similarly, stem rust resistance genes Sr22, Sr26, and Sr50 are effective against the Pgt pathotype TTKSK (Ug99) and its derivatives in addition to commercially important Australian pathotypes. Effectiveness of these genes make them good candidates for combining with known pleiotropic adult plant resistance (PAPR) genes to achieve durable resistance against three rust pathogens. This study was planned to transfer rust resistance genes Yr51, Yr57, Sr22, Sr26, and Sr50 into two Australian (Gladius and Livingston) and two Indian (PBW550 and DBW17) wheat cultivars through marker assisted selection (MAS). These cultivars also carry other rust resistance genes: Gladius carries Lr37/Yr17/Sr38 and Sr24/Lr24; Livingston carries Lr34/Yr18/Sr57, Lr37/Yr17/Sr38, and Sr2; PBW550 and DBW17 carry Lr34/Yr18/Sr57 and Lr26/Yr9/Sr31. Donor sources of Yr51 (AUS91456), Yr57 (AUS91463), Sr22 (Sr22/3*K441), Sr26 (Sr26 WA1), and Sr50 (Dra-1/Chinese Spring ph1b/2/3* Gabo) were crossed with each of the recurrent parents to produce backcross progenies. Markers linked to Yr51 (sun104), Yr57 (gwm389 and BS00062676), Sr22 (cssu22), Sr26 (Sr26#43), and Sr50 (Sr50-5p-F3, R2) were used for their MAS and markers csLV34 (Lr34/Yr18/Sr57), VENTRIUP-LN2 (Lr37/Yr17/Sr38), Sr24#12 (Sr24/Lr24), and csSr2 (Sr2) were used to select genes present in recurrent parents. Progenies of selected individuals were grown and selected under field conditions for plant type and adult plant rust responses. Final selections were genotyped with the relevant markers. Backcross derivatives of these genes were distributed to breeding companies for use as resistance donors.


2021 ◽  
Vol 20 (1) ◽  
pp. 1-27
Author(s):  
Bosco Chemayek ◽  
Urmil K. Bansal ◽  
Hanif Miah ◽  
William W. Wagoire ◽  
Harbans S. Bariana

The objective of this study was to assess diversity for stem rust and stripe rust resistance in an international wheat screening nursery under greenhouse conditions using pathotypes with known avirulence/ virulence profiles. A set of 95 entries of an international wheat screening nursery collected from material generated by staff of the International Maize and Wheat Improvement Centre (CIMMYT) was tested against seven Australian Pgt and five Pst pathotypes through artificial inoculation under the greenhouse conditions using standard procedures. Ten all-stage stem rust resistance genes (Sr8a, Sr8b, Sr9b, Sr12, Sr17, Sr23, Sr24, Sr30, Sr31 and Sr38) and seven all-stage stripe rust resistance genes (Yr3, Yr4, Yr6, Yr9, Yr17, Yr27 and Yr34) were postulated either singly or in combinations based on seedling responses of test entries against pathotypes differing in virulence for commonly deployed genes. Sr30 and Sr38 were the most common stem rust resistance genes in this nursery. The Sr38-linked stripe rust resistance gene Yr17 was present in high proportion. The presence of rust resistance genes Sr24, Sr31/Yr9, Sr38/Yr17 and Yr4 were confirmed using the closely linked molecular markers. The adult plant resistance (APR) genes Sr2 and Lr34/Yr18/Sr57 were detected using linked molecular markers csSr2 and csLV34, respectively. Genotypes carrying combinations of stem rust and stripe rust resistance were identified for use as donor sources in breeding programs.


2014 ◽  
Vol 7 (3) ◽  
Author(s):  
Jessica E. Rutkoski ◽  
Jesse A. Poland ◽  
Ravi P. Singh ◽  
Julio Huerta‐Espino ◽  
Sridhar Bhavani ◽  
...  

2010 ◽  
Vol 61 (12) ◽  
pp. 1036 ◽  
Author(s):  
J. Zhang ◽  
C. R. Wellings ◽  
R. A. McIntosh ◽  
R. F. Park

Seedling resistances to stem rust, leaf rust and stripe rust were evaluated in the 37th International Triticale Screening Nursery, distributed by the International Wheat and Maize Improvement Centre (CIMMYT) in 2005. In stem rust tests, 12 and 69 of a total of 81 entries were postulated to carry Sr27 and SrSatu, respectively. When compared with previous studies of CIMMYT triticale nurseries distributed from 1980 to 1986 and 1991 to 1993, the results suggest a lack of expansion in the diversity of stem rust resistance. A total of 62 of 64 entries were resistant to five leaf rust pathotypes. In stripe rust tests, ~93% of the lines were postulated to carry Yr9 alone or in combination with other genes. The absence of Lr26 in these entries indicated that Yr9 and Lr26 are not genetically associated in triticale. A high proportion of nursery entries (63%) were postulated to carry an uncharacterised gene, YrJackie. The 13 lines resistant to stripe rust and the 62 entries resistant to leaf rust represent potentially useful sources of seedling resistance in developing new triticale cultivars. Field rust tests are needed to verify if seedling susceptible entries also carry adult plant resistance.


2018 ◽  
Vol 131 (10) ◽  
pp. 2245-2266 ◽  
Author(s):  
Austin J. Case ◽  
Sridhar Bhavani ◽  
Godwin Macharia ◽  
Zacharias Pretorius ◽  
Vicky Coetzee ◽  
...  

2014 ◽  
Vol 14 (1) ◽  
Author(s):  
Rohit Mago ◽  
Linda Tabe ◽  
Sonia Vautrin ◽  
Hana Šimková ◽  
Marie Kubaláková ◽  
...  

2015 ◽  
Vol 6 (7) ◽  
pp. 997-1006
Author(s):  
M. Abdalla ◽  
Walaa Tawfik ◽  
A. Hagras ◽  
Nadia Mohamed ◽  
A. Ghanim ◽  
...  

2020 ◽  
Vol 110 (5) ◽  
pp. 1082-1092 ◽  
Author(s):  
Javier Hernandez ◽  
Alicia del Blanco ◽  
Tanya Filichkin ◽  
Scott Fisk ◽  
Lynn Gallagher ◽  
...  

Stripe rust (incited by Puccinia striiformis f. sp. hordei) and stem rust (incited by P. graminis f. sp. tritici) are two of the most important diseases affecting barley. Building on prior work involving the introgression of the resistance genes rpg4/Rpg5 into diverse genetic backgrounds and the discovery of additional quantitative trait locus (QTLs) for stem rust resistance, we generated an array of germplasm in which we mapped resistance to stripe rust and stem rust. Stem rust races TTKSK and QCCJB were used for resistance mapping at the seedling and adult plant stages, respectively. Resistance to stripe rust, at the adult plant stage, was determined by QTLs on chromosomes 1H, 4H, and 5H that were previously reported in the literature. The rpg4/Rpg5 complex was validated as a source of resistance to stem rust at the seedling stage. Some parental germplasm, selected as potentially resistant to stem rust or susceptible but having other positive attributes, showed resistance at the seedling stage, which appears to be allelic to rpg4/Rpg5. The rpg4/Rpg5 complex, and this new allele, were not sufficient for adult plant resistance to stem rust in one environment. A QTL on 5H, distinct from Rpg5 and a previously reported resistance QTL, was required for resistance at the adult plant stage in all environments. This QTL is coincident with the QTL for stripe rust resistance. Germplasm with mapped genes/QTLs conferring resistance to stripe and stem rust was identified and is available as a resource to the research and breeding communities.


Sign in / Sign up

Export Citation Format

Share Document