High stability of genotypic differences in puncture resistance of sugar beet ( Beta vulgaris ) roots under various growing conditions

2021 ◽  
Author(s):  
Nelia Nause ◽  
Alain Tossens ◽  
Hendrik Tschoep ◽  
Christa M. Hoffmann
2020 ◽  
pp. 114-123
Author(s):  
Nelia Nause ◽  
Tobias Meier ◽  
Christa M. Hoffmann

Drought stress affects yield formation and quality of sugar beet. The aim of this study was to identify the growing period, in which drought stress has the greatest impact on growth, and furthermore, to analyze the response of different sugar beet genotypes. Causes for a different response should be identified. In pot experiments in the greenhouse, drought stress was simulated by reducing irrigation to 60% of the water holding capacity (WHC) for four weeks at various growth stages followed by re-watering. Growth reduction was greatest when drought stress occurred early in the season: the content of the quality-determining non-sugars was highest, sugar yield and beet diameter were lowest. Responses of the genotypes in sugar yield, but primarily in the accumulation of osmotically active substances differed. Despite re-watering after drought stress the restrictions could not be compensated during growth. The transpiration coefficient of the drought-stressed treatments was only slightly different to the control, because water consumption in the control did not either increase at average air temperatures beyond 23 °C. The strong effect of early drought stress could be attributed to the high growth rates, so that a limited water supply affected yield formation more than at later growth stages. The storage losses of sugar beet genotypes are closely related to damage during harvest and subsequent infestation with mould and rots. Genetic variation for storability seems to be primarily linked to textural properties of the roots such as the resistance against mechanical damage. However, no information is available about the tissue strength, tissue composition and structural organization leading to an enhanced resistance against damage and pathogen attack. Therefore, the aims of the study were the identification of genotypic differences concerning tissue strength of the beet, the relation to damage and pathogen infestation and the underlying physiological basis of tissue strength. Field trials were carried out with 6 genotypes at 2 locations in 2018. The roots were harvested in August and November. After harvest in November, a storage trial was carried out. The root strength increased from August to November. Beets with a high puncture resistance of the periderm also had a firm inner tissue. Genotypic differences in puncture resistance were not affected by the harvest time, indicating that this trait is stable throughout the growing period. A higher puncture resistance of the beet was related to a lower mould growth during storage. Genotypes with varying tissue strength also differed in fiber content (AIR), but the composition of AIR was stable over genotypes. The number of cambium rings seems not to essentially influence the tissue strength of the beet. In the further course of the project, microscopic analyzes will clarify, whether genotypic differences in tissue strength can be attributed to cell size or cell wall thickness.


1995 ◽  
Vol 94 (2) ◽  
pp. 342-350 ◽  
Author(s):  
Steffen Lenzner ◽  
Kurt Zoglauer ◽  
Otto Schieder

2016 ◽  
pp. 625-632 ◽  
Author(s):  
Christa Hoffmann ◽  
Katharina Schnepel

Good storability of sugar beet is of increasing importance, not only to reduce sugar losses, but also with regard to maintaining the processing quality. Genotypic differences are found in storage losses. However, it is not clear to which extent damage may contribute to the genotypic response. The aim of the study was to quantify the effect of root tip breakage on storage losses of different genotypes. For that purpose, in 2012 and 2013, six sugar beet genotypes were grown in field trials at two locations. After lifting roots were damaged with a cleaning device. They were stored for 8 and 12 weeks, either under controlled conditions in a climate container at constant 8°C, or under ambient temperature in an outdoor clamp. The close correlation underlines that storage losses under controlled conditions (constant temperature) can well be transferred to conditions in practice with fluctuating temperature. The strongest impact on invert sugar accumulation and sugar loss after storage resulted from storage time, followed by damage and growing environment (year × growing site). Cleaning reduced soil tare but increased root tip breakage, in particular for genotypes with low marc content. During storage, pathogen infestation and invert sugar content of the genotypes increased with root tip breakage, but the level differed between growing environments. Sugar loss was closely related to invert sugar accumulation for all treatments, genotypes and environments. Hence, it can be concluded that root tip breakage contributes considerably to storage losses of sugar beet genotypes, and evidently genotypes show a different susceptibility to root tip breakage which is related to their marc content. For long-term storage it is therefore of particular importance to avoid damage during the harvest operations and furthermore, to have genotypes with high storability and low susceptibility to damage.


Sign in / Sign up

Export Citation Format

Share Document