Do seed transfer zones for ecological restoration reflect the spatial genetic variation of the common grassland species Lathyrus pratensis ?

2017 ◽  
Vol 26 (4) ◽  
pp. 667-676 ◽  
Author(s):  
Daniela Listl ◽  
Peter Poschlod ◽  
Christoph Reisch

2013 ◽  
Vol 6 (6) ◽  
pp. 933-948 ◽  
Author(s):  
John Bradley St. Clair ◽  
Francis F. Kilkenny ◽  
Richard C. Johnson ◽  
Nancy L. Shaw ◽  
George Weaver


2016 ◽  
Vol 9 (5) ◽  
pp. 673-684 ◽  
Author(s):  
Marte Holten Jørgensen ◽  
Abdelhameed Elameen ◽  
Nadine Hofman ◽  
Sonja Klemsdal ◽  
Sandra Malaval ◽  
...  


2016 ◽  
Vol 54 (1) ◽  
pp. 116-126 ◽  
Author(s):  
Walter Durka ◽  
Stefan G. Michalski ◽  
Kenneth W. Berendzen ◽  
Oliver Bossdorf ◽  
Anna Bucharova ◽  
...  


2008 ◽  
Vol 9 (3) ◽  
pp. 287-302 ◽  
Author(s):  
Barbara L. Wilson ◽  
Dale C. Darris ◽  
Rob Fiegener ◽  
Randy Johnson ◽  
Matthew E. Horning ◽  
...  


2015 ◽  
Vol 35 (1) ◽  
pp. 174-188 ◽  
Author(s):  
Andrea T. Kramer ◽  
Daniel J. Larkin ◽  
Jeremie B. Fant


Botany ◽  
2010 ◽  
Vol 88 (8) ◽  
pp. 725-736 ◽  
Author(s):  
R. C. Johnson ◽  
Vicky J. Erickson ◽  
Nancy L. Mandel ◽  
J. Bradley St Clair ◽  
Kenneth W. Vance-Borland

Seed transfer zones ensure that germplasm selected for restoration is suitable and sustainable in diverse environments. In this study, seed zones were developed for mountain brome ( Bromus carinatus Hook. & Arn.) in the Blue Mountains of northeastern Oregon and adjoining Washington. Plants from 148 Blue Mountain seed source locations were evaluated in common-garden studies at two contrasting test sites. Data on phenology, morphology, and production were collected over two growing seasons. Plant traits varied significantly and were frequently correlated with annual precipitation and annual maximum temperature at seed source locations (P < 0.05). Plants from warmer locations generally had higher dry matter production, longer leaves, wider crowns, denser foliage, and greater plant height than those from cooler locations. Regression models of environmental variables with the first two principal components (PC 1 and PC 2) explained 46% and 40% of the total variation, respectively. Maps of PC 1 and PC 2 generally corresponded to elevation, temperature, and precipitation gradients. The regression models developed from PC 1 and PC 2 and environmental variables were used to map seed transfer zones. These maps will be useful in selecting mountain brome seed sources for habitat restoration in the Blue Mountains.





Taxon ◽  
2007 ◽  
Vol 56 (2) ◽  
pp. 393-408 ◽  
Author(s):  
Nicola G. Bergh ◽  
Terry A. Hedderson ◽  
H. Peter Linder ◽  
William J. Bond




Ecology ◽  
2014 ◽  
Author(s):  
Danny J. Gustafson ◽  
Alexis Gibson

Ecological restoration is most commonly described as the process of aiding in the recovery of a damaged or destroyed system. In many cases, restoration may not be possible when self-sustaining populations, functions, and trajectories cannot be maintained due to the type of disturbance sustained by a site; in these cases, revegetation or remediation are more achievable goals. The definition of ecological restoration has been expanded to incorporate scientific inquiry into the process of the recovery of a natural range of ecosystem composition, structure, and dynamics. Ecological restoration research spans different levels of organization from genes to ecosystems. Genetic considerations are fundamental to the success of ecological restoration, and considerations of this issue will impact choices from seed source selection to genetic control of ecosystem services. A major decision for restorationists is the use of local versus nonlocal plant material, as well as the mixing of source populations; ideally, these choices can be based on sound population genetic, ecological, and evolutionary theory research. Ultimately, selection of plant material to be used in ecological restoration is driven by the specific project goals, availability and quality of plant materials, site conditions, and scale of the project. Beyond the local versus nonlocal selection issue, genetic issues related to small population dynamics, gene flow in the modern landscape, and gene expression affecting community structure and ecosystem functions can affect the success of ecological restoration activities. This article focuses primarily on plants; however, issues related to genetics of small populations (inbreeding and outbreeding depression, founder effects, and fitness consequences of reduced genetic variation) are important considerations for animal species too. The readings contained within this bibliography include: Ecotypic Variation, Seed Provenance for Restoration, Seed Transfer Zones for Restoration, Seed Provenance for Revegetation, Life History Traits, Moving beyond Neutral Markers, Inbreeding Depression, Outbreeding Depression, Founder Effects, Fitness Consequences of Reduced Genetic Variation, Community and Landscape Genetics, Testing Genotypic Effects on Community and Ecosystem Processes, Evaluating Success, and Genetic Composition and Diversity in Restored Populations.



Sign in / Sign up

Export Citation Format

Share Document