Arm crank ergometer “spin” training improves seated balance and aerobic capacity in people with spinal cord injury

2019 ◽  
Vol 30 (2) ◽  
pp. 361-369 ◽  
Author(s):  
Alison M. M. Williams ◽  
Amanda E. Chisholm ◽  
Andrea Lynn ◽  
Raza N. Malik ◽  
Gevorg Eginyan ◽  
...  
2016 ◽  
Vol 41 (11) ◽  
pp. 1190-1196 ◽  
Author(s):  
Sonja de Groot ◽  
Jacinthe J. Adriaansen ◽  
Marga Tepper ◽  
Govert J. Snoek ◽  
Lucas H.V. van der Woude ◽  
...  

This study investigated (i) the prevalence of the metabolic syndrome (MetS) in people with a long-standing spinal cord injury (SCI); (ii) whether personal or lesion characteristics are determinants of the MetS; and (iii) the association with physical activity or peak aerobic capacity on the MetS. In a cross-sectional study, persons with SCI (N = 223; time since injury of ≥10 years) were tested. The individual components of the MetS were assessed together with the physical activity measured by the Physical Activity Scale for Individuals with Physical Disabilities (PASIPD), while peak aerobic capacity was tested during a graded wheelchair exercise test on a treadmill. Thirty-nine percent of the participants had MetS. In a multivariate logistic regression analyses and after performing a backward regression analysis, only age and education were significant determinants of the MetS. A 10-year increase in age leads to a 1.5 times more chance to have the MetS. Furthermore, people with a low education will multiply the relative risk of MetS compared with people with high education by almost 2. With and without correcting for confounders, no significant relationship was found between PASIPD or peak aerobic capacity and the MetS. It can be concluded that the prevalence of the MetS is high (39%) in people with a long-standing SCI but is comparable to the general Dutch population. Older people and those with a lower education level are most at risk for the MetS. Physical activity and peak aerobic fitness were not related to the MetS in this group with a long-standing SCI.


2020 ◽  
Vol 86 ◽  
pp. 47-56
Author(s):  
Akhil Bheemreddy ◽  
Lisa M. Lombardo ◽  
Michael E. Miller ◽  
Kevin M. Foglyano ◽  
Stephanie Nogan-Bailey ◽  
...  

2015 ◽  
Vol 31 (4) ◽  
pp. 221-228 ◽  
Author(s):  
Musa L. Audu ◽  
Ronald J. Triolo

The contributions of intrinsic (passive) and extrinsic (active) properties of the human trunk, in terms of the simultaneous actions about the hip and spinal joints, to the control of sagittal and coronal seated balance were examined. Able-bodied (ABD) and spinal-cord-injured (SCI) volunteers sat on a moving platform which underwent small amplitude perturbations in the anterior-posterior (AP) and medial-lateral (ML) directions while changes to trunk orientation were measured. A linear parametric model that related platform movement to trunk angle was fit to the experimental data by identifying model parameters in the time domain. The results showed that spinal cord injury leads to a systematic reduction in the extrinsic characteristics, while most of the intrinsic characteristics were rarely affected. In both SCI and ABD individuals, passive characteristics alone were not enough to maintain seated balance. Passive stiffness in the ML direction was almost 3 times that in the AP direction, making more extrinsic mechanisms necessary for balance in the latter direction. Proportional and derivative terms of the extrinsic model made the largest contribution to the overall output from the active system, implying that a simple proportional plus derivative (PD) controller structure will suffice for restoring seated balance after spinal cord injury.


Retos ◽  
2020 ◽  
pp. 565-571
Author(s):  
Guillermo R. Oviedo ◽  
Juan Mariano Alamo ◽  
Oscar A. Niño-Mendez ◽  
Noémie Travier ◽  
Jose L. Ventura ◽  
...  

Abstract. Introduction: Maximal oxygen uptake (VO2) may be one of the most important variables in the study of the responses of people with spinal cord injury (SCI) and without SCI to physical exercise. The results achieved during its assessment serve as a diagnostic and health indicator in clinical settings. Objective: this study aimed to investigate the physiological responses in males with and without SCI performing a maximal incremental test on an asynchronous arm crank ergometer (ACr) and on a recumbent synchronous handbike ergometer (HB). Methods: ten males with SCI and 11 able-bodied males (AB group) participated in this study. Two maximal graded exercise tests were performed, starting at 10 watts and increasing the workload by 10 watts every minute until exhaustion. Results: the AB group achieved lower workloads and absolute VO2 values than the SCI group during the HB test (all p < 0.05). The submaximal values of the relative VO2 peak and RER at workloads between 40-90 watts showed significant differences between SCI and AB on HB and ACr. Significant linear relationships between workload and relative VO2 peak were found during the HB test (p < 0.001). Conclusions: these findings demonstrate that there are different physiological responses between adults with and without SCI when performing maximal and submaximal arm-ergometry. Interestingly, higher VO2 peak and workloads were achieved by the SCI group. In addition, specific prediction equations derived from the current study can be used to calculate the relative VO2 peak in handbikers with and without SCI.  Resumen. Introducción: el consumo de oxígeno (VO2) es una de las variables más importantes en el estudio de la respuesta al ejercicio en personas con y sin lesión medular (SCI; AB). Objetivo: en este estudio se analizaron las respuestas fisiológicas en hombres adultos con y sin SCI al realizar pruebas de esfuerzo máximas en un ergómetro de brazos asincrónico (ACr) en sedestación y en un ergómetro de brazos sincrónico (HB) en posición supina. Métodos: diez hombres con SCI y 11 sin SCI participaron en este estudio. Dos pruebas de esfuerzo gradual fueron realizadas por cada participante, iniciando a 10 watts e incrementando la carga 10 watts cada minuto. Resultados: el grupo sin SCI alcanzó cargas y VO2 menores que los participantes con SCI durante el test en HB (p < 0.05). Los valores submáximos para el VO2 relativo y el RER a cargas de 40-90 watts fueron estadísticamente diferentes entre los grupos en ambos tests. Se observó una correlación lineal entre las cargas de trabajo y el VO2 relativo durante el test en HB (p < 0.001). Conclusiones: los resultados obtenidos en este estudio demuestran que existen respuestas fisiológicas diferentes entre personas con y sin SCI cuando realizan pruebas de esfuerzo con cargas máximas y submáximas. Llamativamente, el grupo SCI alcanzó mayores cargas de trabajo y VO2 que los no SCI. Finalmente, se presentan dos ecuaciones específicas para obtener el VO2 de manera indirecta en personas con y sin SCI mediante el uso de un HB.


2013 ◽  
Vol 36 (2) ◽  
pp. 127-133 ◽  
Author(s):  
Noam Y. Harel ◽  
Pierre K. Asselin ◽  
Drew B. Fineberg ◽  
Thomas J. Pisano ◽  
William A. Bauman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document