Isolation and characterization of multidrug‐resistant Klebsiella pneumoniae from raw cow milk in Jiangsu and Shandong provinces, China

Author(s):  
Yi Yang ◽  
Yalan Peng ◽  
Jingyi Jiang ◽  
Zaicheng Gong ◽  
Hao Zhu ◽  
...  
2020 ◽  
Vol 21 (9) ◽  
pp. 3160 ◽  
Author(s):  
Pilar Domingo-Calap ◽  
Beatriz Beamud ◽  
Lucas Mora-Quilis ◽  
Fernando González-Candelas ◽  
Rafael Sanjuán

The emergence of multidrug-resistant bacteria is a major global health concern. The search for new therapies has brought bacteriophages into the spotlight, and new phages are being described as possible therapeutic agents. Among the bacteria that are most extensively resistant to current antibiotics is Klebsiella pneumoniae, whose hypervariable extracellular capsule makes treatment particularly difficult. Here, we describe two new K. pneumoniae phages, πVLC5 and πVLC6, isolated from environmental samples. These phages belong to the genus Drulisvirus within the family Podoviridae. Both phages encode a similar tail spike protein with putative depolymerase activity, which is shared among other related phages and probably determines their ability to specifically infect K. pneumoniae capsular types K22 and K37. In addition, we found that phage πVLC6 also infects capsular type K13 and is capable of striping the capsules of K. pneumoniae KL2 and KL3, although the phage was not infectious in these two strains. Genome sequence analysis suggested that the extended tropism of phage πVLC6 is conferred by a second, divergent depolymerase. Phage πVLC5 encodes yet another putative depolymerase, but we found no activity of this phage against capsular types other than K22 and K37, after testing a panel of 77 reference strains. Overall, our results confirm that most phages productively infected one or few Klebsiella capsular types. This constitutes an important challenge for clinical applications.


Author(s):  
Rafael Nakamura-Silva ◽  
Mariana Oliveira-Silva ◽  
João Pedro Rueda Furlan ◽  
Eliana Guedes Stehling ◽  
Carlos Eduardo Saraiva Miranda ◽  
...  

2021 ◽  
Vol 9 (2) ◽  
pp. 423
Author(s):  
Ahmed Esmael ◽  
Ehab Azab ◽  
Adil A. Gobouri ◽  
Mohamed A. Nasr-Eldin ◽  
Mahmoud M. A. Moustafa ◽  
...  

Foodborne salmonellosis is a global threat to public health. In the current study, we describe the isolation and characterization of two broad-spectrum, lytic Salmonella phages: SPHG1 and SPHG3 infecting a multidrug-resistant Salmonella Typhimurium EG.SmT3. Electron microscopy and whole genome analysis identified SPHG1 as a Myovirus, while SPHG3 as a new member of the genus “Kuttervirus” within the family Ackermannviridae. SPHG1 and SPHG3 had a lysis time of 60 min. with burst sizes of 104 and 138 PFU/cell, respectively. The two phages were robust at variable temperatures and pH ranges that match the corresponding values of most of the food storage and processing conditions. A phage cocktail containing the two phages was stable in the tested food articles for up to 48 h. The application of the phage cocktail at MOIs of 1000 or 100 resulted in a significant reduction in the viable count of S. Typhimurium by 4.2 log10/sample in milk, water, and on chicken breast. Additionally, the phage cocktail showed a prospective ability to eradicate and reduce the biofilm that formed by S. Typhimurium EG.SmT3. A phage cocktail of SPHG1 and SPHG3 is considered as a promising candidate as a biocontrol agent against foodborne salmonellosis due to its broad host ranges, highly lytic activities, and the absence of any virulence or lysogeny-related genes in their genomes.


Author(s):  
Na Li ◽  
Yigang Zeng ◽  
Rong Bao ◽  
Tongyu Zhu ◽  
Demeng Tan ◽  
...  

Klebsiella pneumoniae is a dominant cause of community-acquired and nosocomial infections, specifically among immunocompromised individuals. The increasing occurrence of multidrug-resistant (MDR) isolates has significantly impacted the effectiveness of antimicrobial agents. As antibiotic resistance is becoming increasingly prevalent worldwide, the use of bacteriophages to treat pathogenic bacterial infections has recently gained attention. Elucidating the details of phage-bacteria interactions will provide insights into phage biology and the better development of phage therapy. In this study, a total of 22 K. pneumoniae isolates were assessed for their genetic and phenotypic relatedness by multi-locus sequence typing (MLST), endonuclease S1 nuclease pulsed-field gel electrophoresis (S1-PFGE), and in vitro antibiotic susceptibility testing. In addition, the beta-lactamase gene (blaKPC) was characterized to determine the spread and outbreak of K. pneumoniae carbapenemase (KPC)-producing enterobacterial pathogens. Using these ST11 carbapenem-resistant K. pneumoniae isolates, three phages (NL_ZS_1, NL_ZS_2, and NL_ZS_3) from the family of Podoviridae were isolated and characterized to evaluate the application of lytic phages against the MDR K. pneumoniae isolates. In vitro inhibition assays with three phages and K. pneumoniae strain ZS15 demonstrated the strong lytic potential of the phages, however, followed by the rapid growth of phage-resistant and phage-sensitive mutants, suggesting several anti-phage mechanisms had developed in the host populations. Together, this data adds more comprehensive knowledge to known phage biology and further emphasizes their complexity and future challenges to overcome prior to using phages for controlling this important MDR bacterium.


Author(s):  
Samiran Bandyopadhyay ◽  
Debaraj Bhattacharyya ◽  
Indranil Samanta ◽  
Jaydeep Banerjee ◽  
Md Habib ◽  
...  

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Jun Li ◽  
Zi-Yan Huang ◽  
Ting Yu ◽  
Xiao-Yan Tao ◽  
Yong-Mei Hu ◽  
...  

Abstract Background The molecular characterization of carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) isolates is not well studied. Our goal was to investigate the molecular epidemiology of CR-hvKP strains that were isolated from a Chinese hospital. Results All clinical carbapenem-resistant K. pneumoniae (CR-KP) isolates were collected and identified from patient samples between 2014 and 2017 from a Chinese hospital. The samples were subjected to screening for CR-hvKP by string test and the detection of the aerobactin gene. CR-hvKP isolates were further confirmed through neutrophil phagocytosis and a mice lethality assay. The CR-hvKP isolates were investigated for their capsular genotyping, virulence gene profiles, and the expression of carbapenemase genes by PCR and DNA sequencing. Multilocus sequence type (MLST) and pulsed-field gel electrophoresis (PFGE) were performed to exclude the homology of these isolates. Twenty strains were identified as CR-hvKP. These strains were resistant to imipenem and several other antibiotics, however, most were susceptible to amikacin. Notably, two isolates were not susceptible to tigecycline. Capsular polysaccharide synthesis genotyping revealed that 17 of the 20 CR-hvKP strains belonged to the K2 serotype, while the others belonged to serotypes other than K1, K2, K5, K20, and K57. The strains were found to be positive for 10 types of virulence genes and a variety of these genes coexisted in the same strain. Two carbapenemase genes were identified: blaKPC-2 (13/20) and blaNDM-1 (1/20). PFGE typing revealed eight clusters comprising isolates that belonged to MLST types ST25, ST11 and ST375, respectively. PFGE cluster A was identified as the main cluster, which included 11 isolates that belong to ST25 and mainly from ICU department. Conclusions Our findings suggest that hospital-acquired infections may contribute in part to the CR-hvKP strains identified in this study. It also suggests that ST25 CR-hvKP strain has a clonal distribution in our hospital. Therefore, effective surveillance and strict infection control strategies should be implemented to prevent outbreak by CR-hvKP strains in hospitals setting.


Sign in / Sign up

Export Citation Format

Share Document