Characterization of multidrug-resistant and virulent Klebsiella pneumoniae strains belonging to the high-risk clonal group 258 (CG258) isolated from inpatients in northeastern Brazil

Author(s):  
Rafael Nakamura-Silva ◽  
Mariana Oliveira-Silva ◽  
João Pedro Rueda Furlan ◽  
Eliana Guedes Stehling ◽  
Carlos Eduardo Saraiva Miranda ◽  
...  
2021 ◽  
Author(s):  
Rafael Nakamura-Silva ◽  
Mariana Oliveira-Silva ◽  
João Pedro Rueda Furlan ◽  
Eliana Guedes Stehling ◽  
Carlos Eduardo Saraiva Miranda ◽  
...  

Abstract Multidrug-resistant (MDR) and hypervirulent Klebsiella pneumoniae (hvKp) clones have become a major threat to global public health. The CG258 is considered a high-risk CG and the K. pneumoniae strains belonging to it are known to be often multi-resistant and to spread mainly in the hospital environment. This study aimed to characterize the antimicrobial resistance profile, virulence factors, and the clonal relationships among 13 K. pneumoniae strains belonging to CG258 from patients admitted to a tertiary hospital in Teresina, in the state of Piauí, northeastern Brazil. Ten strains were classified as MDR and three as extensively drug-resistant (XDR). Three different β-lactamase-encoding genes ( bla KPC , bla OXA-1- like , and bla CTX-M-Gp1) and six virulence genes ( fimH , ycfM , mrkD , entB , ybtS , and kfu ) were detected. Moreover, two hypermucoviscous K. pneumoniae strains and one capsular K-type 2 were found. Multilocus sequence typing analysis revealed 10 different sequence types (STs) (ST14, ST17, ST20, ST29, ST45, ST101, ST268, ST1800, ST3995, and ST3996) belonging to CG258, being two (ST3995 and ST3996) described for the first time in this study.


2018 ◽  
Vol 52 (4) ◽  
pp. 525-527 ◽  
Author(s):  
Bruna Fuga Araújo ◽  
Sabrina Royer ◽  
Paola Amaral Campos ◽  
Melina Lorraine Ferreira ◽  
Iara Rossi Gonçalves ◽  
...  

Author(s):  
Xingbei Weng ◽  
Qiucheng Shi ◽  
Sheng Wang ◽  
Yubo Shi ◽  
Dinghe Sun ◽  
...  

Carbapenem-resistant Klebsiella pneumoniae (CRKP) was epidemic around the world and become a global threat to public health. The most important carbapenem-resistant mechanism is producing carbapenemases, especially Klebsiella pneumoniae carbapenemase (KPC), which is prevalent in the international clonal complex CC11. The high-risk multidrug-resistant CC11 is widespread worldwide, and KPC-producing and (New Delhi metallo) NDM-producing strains had been reported in this clonal complex before; moreover, cases with the CC11 strain faced more severe forms of drug resistance and treatment challenges than other clonal complexes. In this study, we identified an OXA-232-producing ST437 Klebsiella pneumoniae isolate in China, which belonged to CC11. The isolate was resistant to β-lactams, aminoglycosides, and fluoroquinolones but susceptible to fosfomycin, tigecycline, and colistin. The blaOXA-232 gene was located on a 6141 bp ColKP3-type nonconjugative plasmid, and the plasmid was transformed by chemical transformation successfully. This is the first report of OXA-232-producing ST437 K. pneumoniae in China, a new clone of high-risk multidrug-resistant CC11.


2021 ◽  
Author(s):  
Gloria Magi ◽  
Federica Tontarelli ◽  
Sara Caucci ◽  
Laura Di Sante ◽  
Andrea Brenciani ◽  
...  

Aim: This study reports the characterization of carbapenem-resistant colonizing strains of K. pneumoniae. Methods: 650 stool samples were screened for carbapenem-resistant K. pneumoniae (CR-Kp). All strains were characterized for antibiotic susceptibility, typing features, main carbapenemases and extended-spectrum ß-lactamases. The carbapenemase transferability was assessed by interspecific conjugation. Results: Eighteen CR-Kp were multidrug resistant, five were KPC producing. A predominance of ST307 isolates, constituting the predominant cluster by PFGE analysis, was identified (50% were KPC-2 producers). Conjugation data showed the co-transfer of blaKPC-2, blaTEM-1, blaOXA-1, blaCTX-M-15 in a single large pKPN3-like plasmid. Conclusion: Our data pointed out the diversity of colonizing K. pneumoniae strains compared with clinical ones. The predominance of ST307 strains suggested an increased spreading, even in our area, of this high-risk clone.


2021 ◽  
Vol 14 (1) ◽  
pp. 143-151
Author(s):  
Rihab Lagha ◽  
Fethi Ben Abdallah ◽  
Asmaa A.H. ALKhammash ◽  
Nabil Amor ◽  
Mohamed M. Hassan ◽  
...  

2021 ◽  
Author(s):  
Mattia Palmieri ◽  
Kelly L. Wyres ◽  
Caroline Mirande ◽  
Zhao Qiang ◽  
Ye Liyan ◽  
...  

Klebsiella pneumoniae is a frequent cause of nosocomial and severe community-acquired infections. Multidrug-resistant (MDR) and hypervirulent (hv) strains represent major threats, and tracking their emergence, evolution and the emerging convergence of MDR and hv traits is of major importance. We employed whole-genome sequencing (WGS) to study the evolution and epidemiology of a large longitudinal collection of clinical K. pneumoniae isolates from the H301 hospital in Beijing, China. Overall, the population was highly diverse, although some clones were predominant. Strains belonging to clonal group (CG) 258 were dominant, and represented the majority of carbapenemase-producers. While CG258 strains showed high diversity, one clone, ST11-KL47, represented the majority of isolates, and was highly associated with the KPC-2 carbapenemase and several virulence factors, including a virulence plasmid. The second dominant clone was CG23, which is the major hv clone globally. While it is usually susceptible to multiple antibiotics, we found some isolates harbouring MDR plasmids encoding for ESBLs and carbapenemases. We also reported the local emergence of a recently described high-risk clone, ST383. Conversely to strains belonging to CG258, which are usually associated to KPC-2, ST383 strains seem to readily acquire carbapenemases of different types. Moreover, we found several ST383 strains carrying the hypervirulence plasmid. Overall, we detected about 5 % of simultaneous carriage of AMR genes (ESBLs or carbapenemases) and hypervirulence genes. Tracking the emergence and evolution of such strains, causing severe infections with limited treatment options, is fundamental in order to understand their origin and evolution and to limit their spread. This article contains data hosted by Microreact.


2021 ◽  
pp. 105122
Author(s):  
Luana Boff ◽  
Humberlânia de Sousa Duarte ◽  
Gabriela Bergiante Kraychete ◽  
Mayara Gil de Castro Santos ◽  
Rossiane Claudia Vommaro ◽  
...  

Author(s):  
Samiran Bandyopadhyay ◽  
Debaraj Bhattacharyya ◽  
Indranil Samanta ◽  
Jaydeep Banerjee ◽  
Md Habib ◽  
...  

2020 ◽  
Vol 21 (9) ◽  
pp. 3160 ◽  
Author(s):  
Pilar Domingo-Calap ◽  
Beatriz Beamud ◽  
Lucas Mora-Quilis ◽  
Fernando González-Candelas ◽  
Rafael Sanjuán

The emergence of multidrug-resistant bacteria is a major global health concern. The search for new therapies has brought bacteriophages into the spotlight, and new phages are being described as possible therapeutic agents. Among the bacteria that are most extensively resistant to current antibiotics is Klebsiella pneumoniae, whose hypervariable extracellular capsule makes treatment particularly difficult. Here, we describe two new K. pneumoniae phages, πVLC5 and πVLC6, isolated from environmental samples. These phages belong to the genus Drulisvirus within the family Podoviridae. Both phages encode a similar tail spike protein with putative depolymerase activity, which is shared among other related phages and probably determines their ability to specifically infect K. pneumoniae capsular types K22 and K37. In addition, we found that phage πVLC6 also infects capsular type K13 and is capable of striping the capsules of K. pneumoniae KL2 and KL3, although the phage was not infectious in these two strains. Genome sequence analysis suggested that the extended tropism of phage πVLC6 is conferred by a second, divergent depolymerase. Phage πVLC5 encodes yet another putative depolymerase, but we found no activity of this phage against capsular types other than K22 and K37, after testing a panel of 77 reference strains. Overall, our results confirm that most phages productively infected one or few Klebsiella capsular types. This constitutes an important challenge for clinical applications.


2020 ◽  
Vol 26 (6) ◽  
pp. 1212-1220 ◽  
Author(s):  
Rémy A. Bonnin ◽  
Agnès B. Jousset ◽  
Adriana Chiarelli ◽  
Cécile Emeraud ◽  
Philippe Glaser ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document