scholarly journals Increased leaf mesophyll porosity following transient retinoblastoma-related protein silencing is revealed by microcomputed tomography imaging and leads to a system-level physiological response to the altered cell division pattern

2013 ◽  
Vol 76 (6) ◽  
pp. 914-929 ◽  
Author(s):  
Carmen Dorca-Fornell ◽  
Radoslaw Pajor ◽  
Christoph Lehmeier ◽  
Marísa Pérez-Bueno ◽  
Marion Bauch ◽  
...  
1997 ◽  
Vol 139 (6) ◽  
pp. 1361-1371 ◽  
Author(s):  
Isabel Molina ◽  
Sigrid Baars ◽  
Julie A. Brill ◽  
Karen G. Hales ◽  
Margaret T. Fuller ◽  
...  

The tiovivo (tio) gene of Drosophila encodes a kinesin-related protein, KLP38B, that colocalizes with condensed chromatin during cell division. Wild-type function of the tio gene product KLP38B is required for normal chromosome segregation during mitosis. Mitotic cells in tio larval brains displayed circular mitotic figures, increased ploidy, and abnormal anaphase figures. KLP38B mRNA is maternally provided and expressed in cells about to undergo division. We propose that KLP38B, perhaps redundantly with other chromosome-associated microtubule motor proteins, contributes to interactions between chromosome arms and microtubules important for establishing bipolar attachment of chromosomes and assembly of stable bipolar spindles.


Archaea ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Kian-Hong Ng ◽  
Vinayaka Srinivas ◽  
Ramanujam Srinivasan ◽  
Mohan Balasubramanian

Euryarchaeota and Crenarchaeota are two major phyla of archaea which use distinct molecular apparatuses for cell division. Euryarchaea make use of the tubulin-related protein FtsZ, while Crenarchaea, which appear to lack functional FtsZ, employ the Cdv (cell division) components to divide. Ammonia oxidizing archaeon (AOA)Nitrosopumilus maritimusbelongs to another archaeal phylum, the Thaumarchaeota, which has both FtsZ and Cdv genes in the genome. Here, we used a heterologous expression system to characterize FtsZ and Cdv proteins fromN. maritimusby investigating the ability of these proteins to form polymers. We show that one of the Cdv proteins inN. maritimus, the CdvB (Nmar_0816), is capable of forming stable polymers when expressed in fission yeast. TheN. maritimusCdvB is also capable of assembling into filaments in mammalian cells. However,N. maritimusFtsZ does not assemble into polymers in our system. The ability of CdvB, but not FtsZ, to polymerize is consistent with a recent finding showing that several Cdv proteins, but not FtsZ, localize to the mid-cell site in the dividingN. maritimus. Thus, we propose that it is Cdv proteins, rather than FtsZ, that function as the cell division apparatus inN. maritimus.


Sign in / Sign up

Export Citation Format

Share Document