Resource allocation strategies among vegetative growth, sexual reproduction, asexual reproduction and defense during growing season of Aconitum kusnezoffii Reichb.

2020 ◽  
Author(s):  
Mingze Tang ◽  
Wei Zhao ◽  
Ming Xing ◽  
Jiaxin Zhao ◽  
Zhang Jiang ◽  
...  
mBio ◽  
2019 ◽  
Vol 10 (2) ◽  
Author(s):  
Zheng Wang ◽  
Cristina Miguel-Rojas ◽  
Francesc Lopez-Giraldez ◽  
Oded Yarden ◽  
Frances Trail ◽  
...  

ABSTRACTFungal spores germinate and undergo vegetative growth, leading to either asexual or sexual reproductive dispersal. Previous research has indicated that among developmental regulatory genes, expression is conserved across nutritional environments, whereas pathways for carbon and nitrogen metabolism appear highly responsive—perhaps to accommodate differential nutritive processing. To comprehensively investigate conidial germination and the adaptive life history decision-making underlying these two modes of reproduction, we profiled transcription ofNeurospora crassagerminating on two media: synthetic Bird medium, designed to promote asexual reproduction; and a natural maple sap medium, on which both asexual reproduction and sexual reproduction manifest. A later start to germination but faster development was observed on synthetic medium. Metabolic genes exhibited altered expression in response to nutrients—at least 34% of the genes in the genome were significantly downregulated during the first two stages of conidial germination on synthetic medium. Knockouts of genes exhibiting differential expression across development altered germination and growth rates, as well as in one case causing abnormal germination. A consensus Bayesian network of these genes indicated especially tight integration of environmental sensing, asexual and sexual development, and nitrogen metabolism on a natural medium, suggesting that in natural environments, a more dynamic and tentative balance of asexual and sexual development may be typical ofN. crassacolonies.IMPORTANCEOne of the most remarkable successes of life is its ability to flourish in response to temporally and spatially varying environments. Fungi occupy diverse ecosystems, and their sensitivity to these environmental changes often drives major fungal life history decisions, including the major switch from vegetative growth to asexual or sexual reproduction. Spore germination comprises the first and simplest stage of vegetative growth. We examined the dependence of this early life history on the nutritional environment using genome-wide transcriptomics. We demonstrated that for developmental regulatory genes, expression was generally conserved across nutritional environments, whereas metabolic gene expression was highly labile. The level of activation of developmental genes did depend on current nutrient conditions, as did the modularity of metabolic and developmental response network interactions. This knowledge is critical to the development of future technologies that could manipulate fungal growth for medical, agricultural, or industrial purposes.


1992 ◽  
Vol 40 (3) ◽  
pp. 353 ◽  
Author(s):  
PS Karlsson ◽  
JS Pate

Proportional allocations of current total dry matter (DM), N and P to early season asexual gemma production and late-season flowering and seed production were compared for eight pygmy rosette form and three micro stilt-form perennial pygmy sundews (Drosera spp.) in native habitat in south-western Australia. Mean allocations to gemmae for the smaller rosette species were 22% for DM, 60% for N and 38% for P versus 8, 20 and 23% (DM, N, P) respectively for the micro stilt forms. Allocations to mature fully formed seeds were extremely low, 1-8, 4.0 and 5.4% (DM, N, P) for the rosette forms, 0.7, 3-0 and 2.3% respectively for the micro stilt forms. The above values reflect the heavy bias towards gemma production, (8-52 propagules per plant per season across the 11 species) as opposed to that for seed (0-8 fully formed seeds per plant per season). Comparable information for the annual nongemmiferous pygmy sundew D. glanduligera showed end of season allocation of 66, 37 and 29% (DM, N, P) of total plant resource to inflorescences minus seeds, and additional amounts equivalent to 30, 59 and 69% to the 60 seeds produced per plant of this species in the study season. A detailed phenology of resource allocation across a full season of growth in second, third and fourth season plants of the rosette perennial D. closterostigma showed net seasonal losses in the total vegetative resource of N and of P in older plants attributable to apparent over commitment to asexual reproduction during the season of study.


2013 ◽  
Vol 726-731 ◽  
pp. 4431-4435 ◽  
Author(s):  
Hui Gao ◽  
Yu Bao Gao ◽  
An Zhi Ren ◽  
Wei Bin Ruan

Trade-off between vegetative growth and reproduction is an important plant adaptive strategy to environmental variability. The study investigated the Stipa grandis resource allocation and the relationship between its sexual reproduction and climate factors among three sites located along a typical environmental gradient in the Inner Mongolian Plateau. The results show that different climatic characteristics among three habitats cause the growth differentiation of S. grandis. S. grandis exhibits a prominent change on the resource allocation patterns. The number of reproductive tillers and panicles biomass allocation are significantly increased along the gradient of water availability and temperature whereas the number of vegetative tillers and root biomass allocation are reduced. The rate of the percentage increase is prominently reduced although the foliage allocation increased. It suggests that under the environments with drought and high temperature, S. grandis allocates more resources to sexual reproduction but reduces the investment in vegetative growth and asexual reproduction. Moreover, the amount of precipitation in April and May are significantly correlated with the sexual reproductive allocation of S. grandis.


Impact ◽  
2020 ◽  
Vol 2020 (6) ◽  
pp. 73-75
Author(s):  
Akihiko Watanabe

One of the unifying traits of life on this planet is reproduction, or life's ability to make copies of itself. The mode of reproduction has evolved over time, having almost certainly begun with simple asexual reproduction when the ancestral single celled organism divided into two. Since these beginnings' life has tried out numerous strategies, and perhaps one of the most important and successful has been sexual reproduction. This form of reproduction relies on the union of gametes, otherwise known as sperm and egg. Evolutionarily, sexual reproduction allows for greater adaptive potential because the genes of two unique individuals have a chance to recombine and mix in order to produce a new individual. Unlike asexual reproduction which produces genetically-identical clones of the parent individual, sex produces offspring with novel genes and combinations of genes. Therefore, in the face of new selective pressures there is a higher chance that one of these novel genetic profiles will produce an adaptation that is advantageous in the new circumstances. Dr Akihiko Watanabe is a reproductive biologist based in the Department of Biology, Faculty of Science Yamagata University in Japan, he is currently working on three research projects; a comparative study on the signalling pathways for inducing sperm motility and acrosome reaction in amphibians, the mechanism behind the adaptive modification of sperm morphology and motility, and the origin of sperm motility initiating substance (SMIS).


Author(s):  
G.J. Melman ◽  
A.K. Parlikad ◽  
E.A.B. Cameron

AbstractCOVID-19 has disrupted healthcare operations and resulted in large-scale cancellations of elective surgery. Hospitals throughout the world made life-altering resource allocation decisions and prioritised the care of COVID-19 patients. Without effective models to evaluate resource allocation strategies encompassing COVID-19 and non-COVID-19 care, hospitals face the risk of making sub-optimal local resource allocation decisions. A discrete-event-simulation model is proposed in this paper to describe COVID-19, elective surgery, and emergency surgery patient flows. COVID-19-specific patient flows and a surgical patient flow network were constructed based on data of 475 COVID-19 patients and 28,831 non-COVID-19 patients in Addenbrooke’s hospital in the UK. The model enabled the evaluation of three resource allocation strategies, for two COVID-19 wave scenarios: proactive cancellation of elective surgery, reactive cancellation of elective surgery, and ring-fencing operating theatre capacity. The results suggest that a ring-fencing strategy outperforms the other strategies, regardless of the COVID-19 scenario, in terms of total direct deaths and the number of surgeries performed. However, this does come at the cost of 50% more critical care rejections. In terms of aggregate hospital performance, a reactive cancellation strategy prioritising COVID-19 is no longer favourable if more than 7.3% of elective surgeries can be considered life-saving. Additionally, the model demonstrates the impact of timely hospital preparation and staff availability, on the ability to treat patients during a pandemic. The model can aid hospitals worldwide during pandemics and disasters, to evaluate their resource allocation strategies and identify the effect of redefining the prioritisation of patients.


Genetics ◽  
2003 ◽  
Vol 164 (3) ◽  
pp. 1099-1118 ◽  
Author(s):  
Sarah P Otto

AbstractIn diploids, sexual reproduction promotes both the segregation of alleles at the same locus and the recombination of alleles at different loci. This article is the first to investigate the possibility that sex might have evolved and been maintained to promote segregation, using a model that incorporates both a general selection regime and modifier alleles that alter an individual’s allocation to sexual vs. asexual reproduction. The fate of different modifier alleles was found to depend strongly on the strength of selection at fitness loci and on the presence of inbreeding among individuals undergoing sexual reproduction. When selection is weak and mating occurs randomly among sexually produced gametes, reductions in the occurrence of sex are favored, but the genome-wide strength of selection is extremely small. In contrast, when selection is weak and some inbreeding occurs among gametes, increased allocation to sexual reproduction is expected as long as deleterious mutations are partially recessive and/or beneficial mutations are partially dominant. Under strong selection, the conditions under which increased allocation to sex evolves are reversed. Because deleterious mutations are typically considered to be partially recessive and weakly selected and because most populations exhibit some degree of inbreeding, this model predicts that higher frequencies of sex would evolve and be maintained as a consequence of the effects of segregation. Even with low levels of inbreeding, selection is stronger on a modifier that promotes segregation than on a modifier that promotes recombination, suggesting that the benefits of segregation are more likely than the benefits of recombination to have driven the evolution of sexual reproduction in diploids.


Sign in / Sign up

Export Citation Format

Share Document