scholarly journals Sunshine-based Global Solar Radiation Modelling: Case Study of Putrajaya, Malaysia

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Yun Ii Go ◽  
Kheng Yew Tsung

Electricity demands are on the rise and with it, carbon dioxide emissions from many conventional power plants are increasing. In the efforts to mitigate such phenomena, the Malaysian government seeks to implement Building Integrated Photovoltaic (BIPV) projects. Early stage studies on Global Solar Radiation (GSR) have been carried out in several states in Malaysia including Penang, Kuala Lumpur and Kota Bharu. Afterward, data from the Malaysia Meteorological Department and the Malaysia National University have been used to estimate the monthly average daily global radiation in various locations in Malaysia. Putrajaya, a location which is implementing Malaysian Building Integrated Photovoltaic (MBIPV) is among the locations where a GSR study is currently absent. Conventional methods exist for GSR estimation with the aid of pyranometer. However, this method of GSR estimation is time consuming and not cost-effective practice. The main objective of this study is to estimate the GSR in Putrajaya. This is achieved in this study by utilizing sunshine-based data with calculated monthly average daily extraterrestrial radiation on a horizontal surface and monthly average maximum possible daily sunshine to plot a linearly fitted graph. Coefficients in the Angstrom-Prescott (A-P) model was generated from the plotted graph and was used for GSR estimation where a = 0.5 and b = 0.11. The mean percentage error (MPE) of the GSR estimation was found to be 3.4. Therefore, the estimation of GSR in Putrajaya have been successful for the first-time using sunshine-based data from dual locations method. The GSR estimation of Putrajaya in this study could benefit stakeholders in civil development sectors, policy and energy authorities.

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Boluwaji M. Olomiyesan ◽  
Onyedi D. Oyedum

In this study, the performance of three global solar radiation models and the accuracy of global solar radiation data derived from three sources were compared. Twenty-two years (1984–2005) of surface meteorological data consisting of monthly mean daily sunshine duration, minimum and maximum temperatures, and global solar radiation collected from the Nigerian Meteorological (NIMET) Agency, Oshodi, Lagos, and the National Aeronautics Space Agency (NASA) for three locations in North-Western region of Nigeria were used. A new model incorporating Garcia model into Angstrom-Prescott model was proposed for estimating global radiation in Nigeria. The performances of the models used were determined by using mean bias error (MBE), mean percentage error (MPE), root mean square error (RMSE), and coefficient of determination (R2). Based on the statistical error indices, the proposed model was found to have the best accuracy with the least RMSE values (0.376 for Sokoto, 0.463 for Kaduna, and 0.449 for Kano) and highest coefficient of determination, R2 values of 0.922, 0.938, and 0.961 for Sokoto, Kano, and Kaduna, respectively. Also, the comparative study result indicates that the estimated global radiation from the proposed model has a better error range and fits the ground measured data better than the satellite-derived data.


Solar Energy ◽  
2004 ◽  
Author(s):  
Ramiro L. Rivera ◽  
Karim Altaii

Solar radiation was measured and recorded on a 5-minute, hourly and daily basis at a number of sites on the Caribbean island of Puerto Rico (located from 18° to 18° 30’N latitude and from 65° 30’ to 67° 15’W longitude) over a 24 calendar month time frame. The global solar radiation was measured at four sites (namely: Aguadilla, Ponce, Gurabo, and San Juan). The global solar radiation data was measured by an Eppley Precision Spectral Pyranometer (model PSP) mounted on a horizontal surface. This pyranometer is sensitive to solar radiation in the range of 0.285 ≤ λ ≤ 2.8 μm wavelengths. Statistical analysis such as the daily average, monthly average hourly, monthly average daily, and annual average daily global radiation are presented in this paper. Despite its small size, a 13 percent variation in the global solar radiation has been observed within the island. Reasonable solar radiation values, for solar energy conversion system installation, seem to exist at and possibly around Aguadilla.


MAUSAM ◽  
2021 ◽  
Vol 51 (3) ◽  
pp. 275-280
Author(s):  
A. I. SALEM

For three years (1990-92) measurements of the monthly average daily global, G, and ultraviolet, UV, solar radiation incident on a horizontal surface at Cairo (30°15'N, 31°17'E) and Aswan (23°58'N, 32°47'E) are presented. processed and analysed. It was found that the computed monthly average daily values for the obtained solar radiation components, G and UV, were (18.1 MJ/m2, 0.55 MJ/m2, for Cairo and (22.1 MJ/m2, 0.71 MJ/m2, for Aswan. The effect of atmospheric dust on the measured solar radiation components is also investigated and discussed. The ratio of the ultraviolet to global radiation (UV/G) are calculated and compared with other sites in the Arabian Peninsula. A regression analysis has been done to find a correlation between G and UV at the selected sites during the three year period and the recommended correlation equations have also been stated.   Since the meteorological measurements of UV solar radiation are not available over Egypt. except at Cairo (Lower Egypt) and Aswan (Upper Egypt) stations, our correlation equations can be used to calculate this component from the available global solar radiation measurements at any site in the two zones of Upper and Lower Egypt.


2019 ◽  
Vol 13 (1) ◽  
pp. 43-55
Author(s):  
D. O. Akpootu ◽  
A. M. Rabiu

Background:Estimation of tropospheric radio refractivity is significant in the planning and design of terrestrial communication links.Methods:In this study, the monthly average daily atmospheric pressure, relative humidity and temperature data obtained from the National Aeronautics and Space Administration (NASA) during the period of twenty two years (July 1983 - June 2005) for Osogbo (Latitude 7.470N, Longitude 4.290E, and 302.0 m above sea level) were used to estimate the monthly tropospheric radio refractivity. The monthly average daily global solar radiation with other meteorological parameters was used to developed one, two, three and four variable correlation(s) tropospheric radio refractivity models for the location. The accuracy of the proposed models are validated using statistical indicator of coefficient of determination (R2), Mean Bias Error (MBE), Root Mean Square Error (RMSE), Mean Percentage Error (MPE), Nash - Sutcliffe Equation (NSE) and Index of Agreement (IA).Results:In each case one empirical model was recommended based on their exceptional performances after ranking, except for the two variation correlations with two empirical models. The recommended models were further subjected to ranking from which the three variable correlations model that relates the radio refractivity with the absolute temperature, relative humidity and global solar radiation was found more suitable for estimating tropospheric radio refractivity for Osogbo with R2= 100.0%, MBE = -0.2913 N-units, RMSE = 0.3869 N-units, MPE = 0.0811%, NSE = 99.9999% and IA = 100.00%.Conclusion:The newly developed recommended models (Equations 16c, 17d, 17f, 18d and 19) can be used for estimating daily and monthly values of tropospheric radio refractivity with higher accuracy and has good compliance to highly varying climatic conditions for Osogbo and regions of similar climatic information.


2016 ◽  
Vol 15 (5) ◽  
pp. 6724-6731
Author(s):  
Hussain Z. Ali ◽  
Ali. M. AL-Salihi ◽  
Ahmed. K. AL-Abodee

The mapping of global solar radiation is important in designing of solar energy system and renewable energy applications, also the global solar radiation estimation and mapping will facilitate engineers and architect purposes and applications. In present paper measured and estimated global solar radiation data was employed. The estimation of global radiation data can give results with acceptable accuracy to establish solar maps of monthly radiation using Geographic Information Systems (GIS) software. Simple Kriging interpolation was used to derive radiation maps over Iraq.  Different models were employed, namely Spherical, Circular, and Gaussian. Solar radiation data for the years 1985,1990,1995,2000 and 2005 were used for the production of solar radiation maps over Iraq. On average, Iraq receives (5000) kWh/m2 of global solar radiation in year 2005. The highest global solar radiation is estimated at 6790kWh/m2 in September while the lowest is 1660 kWh/m2in December. Cross validation was used to find the best model by comparing the error criteria, namely MPE, RMS, MSPE, RMSS, and ASE. It was found the Spherical model gives best results according to the cross validation error criteria.Mapping Monthly Average Global Solar Radiation over Iraq Using GIS and Heliosat Model


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Ali Assi ◽  
Mohammed Jama ◽  
Maitha Al-Shamisi

Mathematical expressions have been employed to estimate global solar radiation on horizontal from relative sunshine duration for two weather stations in the United Arab Emirates (UAE), which are Abu Dhabi and Al Ain. These expressions include the original Angstrom-Prescott regression function (linear), quadratic function, third-order function, single-term exponential function, power function, logarithmic, and linear-logarithmic function. The predicted values were compared to the measured values using number of statistical methods to validate the goodness of the fits, such as residual analysis and goodness of fit statistics. All the used mathematical models performed generally well in both cities of Abu Dhabi and Al Ain, with all values of the coefficient of determination (R2) higher than 75%. Specifically, the linear Angstrom-Prescott model estimated the average monthly global radiation on horizontal best for the city of Abu Dhabi, providing the second lowest mean absolute percentage error (MAPE) of 1.89% and the highest value of R2, which is approximately 94%, while the third-order model proved to be the best estimator for the city of Al Ain, providing the lowest MAPE value (3.06%) and a corresponding R2 of 83%.


2019 ◽  
Vol 13 (1) ◽  
pp. 43-55
Author(s):  
D. O. Akpootu ◽  
A. M. Rabiu

Background:Estimation of tropospheric radio refractivity is significant in the planning and design of terrestrial communication links.Methods:In this study, the monthly average daily atmospheric pressure, relative humidity and temperature data obtained from the National Aeronautics and Space Administration (NASA) during the period of twenty two years (July 1983 - June 2005) for Osogbo (Latitude 7.470N, Longitude 4.290E, and 302.0 m above sea level) were used to estimate the monthly tropospheric radio refractivity. The monthly average daily global solar radiation with other meteorological parameters was used to developed one, two, three and four variable correlation(s) tropospheric radio refractivity models for the location. The accuracy of the proposed models are validated using statistical indicator of coefficient of determination (R2), Mean Bias Error (MBE), Root Mean Square Error (RMSE), Mean Percentage Error (MPE), Nash - Sutcliffe Equation (NSE) and Index of Agreement (IA).Results:In each case one empirical model was recommended based on their exceptional performances after ranking, except for the two variation correlations with two empirical models. The recommended models were further subjected to ranking from which the three variable correlations model that relates the radio refractivity with the absolute temperature, relative humidity and global solar radiation was found more suitable for estimating tropospheric radio refractivity for Osogbo with R2= 100.0%, MBE = -0.2913 N-units, RMSE = 0.3869 N-units, MPE = 0.0811%, NSE = 99.9999% and IA = 100.00%.Conclusion:The newly developed recommended models (Equations 16c, 17d, 17f, 18d and 19) can be used for estimating daily and monthly values of tropospheric radio refractivity with higher accuracy and has good compliance to highly varying climatic conditions for Osogbo and regions of similar climatic information.


Author(s):  
Djelloul BENATIALLAH ◽  
Kada BOUCHOUICHA ◽  
Ali BENATIALLAH ◽  
Abdelkader HARROUZ ◽  
Bahous Nasri ◽  
...  

Global demand for energy is increasing rapidly and natural energy resources such as oil, gas and uranium are declining due to the widespread diffusion and development of the industry in recent years. To cover energy needs, research is being conducted on renewable energy. One of the renewable energies that can meet the world's demand so far is solar energy, which is free and inexhaustible in most parts of the world, and it has become an economic source. In this article we will make a forecast of the empirical Campbell model which will allow us to estimate the daily global irradiation on a horizontal plane and to compare it with the results measured at the Adrar site. The results show that the mean absolute percentage error (MAPE) less than 7%, the mean bias error does not exceed 3% in absolute value, relative RMSE does not exceed 7% and the correlation coefficient greater than 0.99 for the annual global radiation. It was concluded that this model could be used to predict the global solar radiation for Adrar site and for other sites with similar climatic conditions.


2014 ◽  
Vol 5 (1) ◽  
pp. 669-680
Author(s):  
Susan G. Lakkis ◽  
Mario Lavorato ◽  
Pablo O. Canziani

Six existing models and one proposed approach for estimating global solar radiation were tested in Buenos Aires using commonly measured meteorological data as temperature and sunshine hours covering the years 2010-2013. Statistical predictors as mean bias error, root mean square, mean percentage error, slope and regression coefficients were used as validation criteria. The variability explained (R2), slope and MPE indicated that the higher precision could be excepted when sunshine hours are used as predictor. The new proposed approach explained almost 99% of the RG variability with deviation of less than ± 0.1 MJm-2day-1 and with the MPE smallest value below 1 %. The well known Ångström-Prescott methods, first and third order, was also found to perform for the measured data with high accuracy (R2=0.97-0.99) but with slightly higher MBE values (0.17-0.18 MJm-2day-1). The results pointed out that the third order Ångström type correlation did not improve the estimation accuracy of solar radiation given the highest range of deviation and mean percentage error obtained.  Where the sunshine hours were not available, the formulae including temperature data might be considered as an alternative although the methods displayed larger deviation and tended to overestimate the solar radiation behavior.


Sign in / Sign up

Export Citation Format

Share Document