Effect of Confining Layers of Steel Straps Confined High-Strength Concrete Cylinder under Uniaxial Cyclic Compression

2014 ◽  
Vol 70 (1) ◽  
Author(s):  
Hoong Pin Lee ◽  
Abdullah Zawawi Awang ◽  
Wahid Omar

The remarkable advantages and promising increment in concrete ultimate capacity as well as ductility by using steel straps as lateral confinement has brought the steel strapping tensioning technique (SSTT) as one of the most affordable confining technique in market. A number of studies have been reported the behaviour of SSTT-confined concrete under uniaxial monotonic compression loading but none of any study addressed the uniaxial cyclic response of such confinement. In this paper, twenty-one high-strength concrete cylinder specimens with diameter of 150 mm and 300 mm in height were cast, laterally pre-tensioned with steel strap in different confining layers and tested to failure under uniaxial cyclic and monotonic compression loading. A number of conclusions to be drawn from experimental results including the tangential validation of stress-strain curve for uniaxial monotonic and cyclic loading, independency of plastic strain to the amount of confining layers, the disagreement of uniqueness concept on the repeated uniaxial unloading and reloading cycles, and the promising effect of confining layers and loading patterns to the ultimate capacity of SSTT confinement. A plastic strain model is proposed and compared with existing plastic strain models. The result proved that SSTT confinement able to secure the lowest plastic strain among the others existing confinement method. 

2014 ◽  
Vol 1014 ◽  
pp. 49-52
Author(s):  
Xiao Ping Su

With the wide application of high strength concrete in the building construction,the risk making concrete subject to high temperatures during a fire is increasing. Comparison tests on the mechanical properties of high strength concrete (HSC) and normal strength concrete (NSC) after the action of high temperature were made in this article, which were compared from the following aspects: the peak stress, the peak strain, elasticity modulus, and stress-strain curve after high temperature. Results show that the laws of the mechanical properties of HSC and NSC changing with the temperature are the same. With the increase of heating temperature, the peak stress and elasticity modulus decreases, while the peak strain grows rapidly. HSC shows greater brittleness and worse fire-resistant performance than NSC, and destroys suddenly. The research and evaluation on the fire-resistant performance of HSC should be strengthened during the structural design and construction on the HSC buildings.


2017 ◽  
Vol 10 (6) ◽  
pp. 1273-1319 ◽  
Author(s):  
E. S. FORTES ◽  
G. A. PARSEKIAN ◽  
J. S. CAMACHO ◽  
F. S. FONSECA

Abstract Although the use of high strength concrete blocks for the construction of tall buildings is becoming common in Brazil, their mechanical properties and behavior are not fully understood. The literature shows a gap in experimental studies with the use of high strength concrete blocks, i.e., those with compressive strength greater than 16 MPa. The work presented herein was conducted in order to study the behavior of high strength structural masonry. Therefore, the compressive strength and modulus of elasticity of concrete block walls tested under axial load were assessed. The specimens included grouted and ungrouted walls and walls with a mid-height bond beam; ungrouted walls were constructed with face-shell and full mortar bedding. The walls were built and tested in the laboratory of CESP and in the Structures Laboratory of the UNESP Civil Engineering Department in Ilha Solteira (NEPAE). Concrete blocks with nominal compressive strength of 16 (B1), 24 (B2) and 30 (B3) MPa were used. Ungrouted masonry walls had a height of 220 cm and a width of 120 cm while grouted masonry walls had a height of 220 cm and a width of 80 cm. Traditional Portland cement, sand and lime mortar was used. The testing program included 36 blocks, 18 prisms, 9 ungrouted walls (6 with face-shell mortar bedding and 3 with full mortar bedding), 9 grouted masonry walls, and 12 ungrouted walls with a bond beam at mid-height. The experimental results were used to determine the compressive strength ratio between masonry units, prisms and masonry walls. The analyses included assessing the cracking pattern, the mode of failure and the stress-strain curve of the masonry walls. Tests results indicate that the prism-to-unit strength ratio varies according to the block strength; that face-shell mortar bedding is suitable for high strength concrete masonry; and that 20% resistance decrease for face-shell mortar bedding when compared with full mortar bedding is a conservative consideration. The results also show that using a bond beam at the mid-height of the wall does not lead to a compressive strength decreased but it changes the failure mode and the shape of the stress-strain curve. In addition, the results show that estimating E = 800 fp is conservative for ungrouted masonry walls but reasonably accurate for grouted masonry walls and that there is no reason to limit the value of E to a maximum value of 16 GPa. Furthermore, the results show that, for design purposes, a wall-to-prism strength ratio value of 0.7 may be used for high strength concrete masonry.


2014 ◽  
Vol 567 ◽  
pp. 476-481
Author(s):  
Nasir Shafiq ◽  
Tehmina Ayub ◽  
Muhd Fadhil Nuruddin

To date, various predictive models for high strength concrete (HSC) have been proposed that are capable of generating complete stress-strain curves. These models were validated for HSC prepared with and without silica fume. In this paper, an investigation on these predictive models has been presented by applying them on two different series of HSC. The first series of HSC was prepared by utilizing 100% cement content, while second series was prepared by utilizing 90% cement and 10% Metakaolin. The compressive strength of the concrete was ranged from 71-87 MPa. For each series of HSC, total four cylinders of the size 100×200mm were cast to obtain the stress-strain curves at 28 days.It has been found that the pattern of the stress-strain curve of each cylinder among four cylinders of each series was different from other, in spite of preparing from the similar batch. When predictive models were applied to these cylinders using their test data then it was found that all models more or less deficient to accurately predict the stress-strain behavior.


Author(s):  
Carmen Ibáñez Usach ◽  
David Hernández-Figueirido ◽  
Ana Piquer Vicent

In order to study the mechanical response of concrete-filled steel tubular (CFST) columns, several experimental and theoretical studies have been conducted in the last years. However, the influence of thin-walled steel tubes on the axial capacity of these composite columns is not completely stablished, especially when it is combined with high-strength concrete as infill. In this paper, the results of an experimental campaign on 9 concrete-filled steel tubular stub columns subjected to concentric load are presented. Different cross-section shapes are considered in this campaign, i.e. circular, square and rectangular. The influence of the steel tube wall thickness is analysed by including in the tests specimens with thin-walled tubes, whose behaviour needs to be studied in depth given the issues arising when working under compression. The experimental program is designed so the analysis of the results permits to drawn consistent conclusions. For each series, the steel tube thickness is the only geometric parameter modified in order to properly study its effect. Besides, two different concrete strengths were considered for the concrete infill, i.e. normal and high- strength concrete, to observe their effect on the ultimate capacity of the columns. During the tests, the specimens are subjected to axial load and the evolution of the axial displacement with the load is registered. The ultimate capacity of each specimen is obtained and an analysis of the steel tube thickness and concrete strength influence is accomplished. Finally, the study of the dependency of the failure mode on these parameters is carried out.


Sign in / Sign up

Export Citation Format

Share Document